首页> 外文期刊>IEEE transactions on audio, speech and language processing >Adaptation of Bayesian Models for Single-Channel Source Separation and its Application to Voice/Music Separation in Popular Songs
【24h】

Adaptation of Bayesian Models for Single-Channel Source Separation and its Application to Voice/Music Separation in Popular Songs

机译:贝叶斯模型对单通道源分离的适应及其在流行歌曲中声音/音乐分离中的应用

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic approaches can offer satisfactory solutions to source separation with a single channel, provided that the models of the sources match accurately the statistical properties of the mixed signals. However, it is not always possible to train such models. To overcome this problem, we propose to resort to an adaptation scheme for adjusting the source models with respect to the actual properties of the signals observed in the mix. In this paper, we introduce a general formalism for source model adaptation which is expressed in the framework of Bayesian models. Particular cases of the proposed approach are then investigated experimentally on the problem of separating voice from music in popular songs. The obtained results show that an adaptation scheme can improve consistently and significantly the separation performance in comparison with nonadapted models.
机译:假设信号源的模型与混合信号的统计特性准确匹配,则概率方法可以为单通道信号源分离提供令人满意的解决方案。但是,并非总是可以训练这样的模型。为了克服这个问题,我们建议采用一种自适应方案,以根据在混合中观察到的信号的实际属性来调整源模型。在本文中,我们介绍了一种在贝叶斯模型框架中表达的用于源模型适应的一般形式主义。然后,针对流行歌曲中的声音与音乐分离问题,对提出的方法的特殊情况进行了实验研究。获得的结果表明,与非自适应模型相比,自适应方案可以一致,显着改善分离性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号