首页> 外文期刊>IEEE transactions on audio, speech and language processing >Gaussian Mixture Clustering and Language Adaptation for the Development of a New Language Speech Recognition System
【24h】

Gaussian Mixture Clustering and Language Adaptation for the Development of a New Language Speech Recognition System

机译:高斯混合聚类和语言适应为新型语言语音识别系统的发展

获取原文
获取原文并翻译 | 示例

摘要

The porting of a speech recognition system to a new language is usually a time-consuming and expensive process since it requires collecting, transcribing, and processing a large amount of language-specific training sentences. This work presents techniques for improved cross-language transfer of speech recognition systems to new target languages. Such techniques are particularly useful for target languages where minimal amounts of training data are available. We describe a novel method to produce a language-independent system by combining acoustic models from a number of source languages. This intermediate language-independent acoustic model is used to bootstrap a target-language system by applying language adaptation. For our experiments, we use acoustic models of seven source languages to develop a target Greek acoustic model. We show that our technique significantly outperforms a system trained from scratch when less than 8 h of read speech is available
机译:语音识别系统向新语言的移植通常是一个耗时且昂贵的过程,因为它需要收集,记录和处理大量特定于语言的训练语句。这项工作提出了改进语音识别系统到新目标语言的跨语言传输的技术。此类技术对于可使用最少培训数据的目标语言特别有用。我们描述了一种通过组合来自多种源语言的声学模型来产生独立于语言的系统的新颖方法。这种独立于语言的中间声学模型用于通过应用语言自适应来引导目标语言系统。对于我们的实验,我们使用七种源语言的声学模型来开发目标希腊声学模型。我们表明,当少于8小时的阅读语音可用时,我们的技术将大大优于从头开始训练的系统

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号