首页> 外文期刊>IEEE transactions on audio, speech and language processing >Integration of Speech Recognition and Machine Translation in Computer-Assisted Translation
【24h】

Integration of Speech Recognition and Machine Translation in Computer-Assisted Translation

机译:语音识别与机器翻译在计算机辅助翻译中的集成

获取原文
获取原文并翻译 | 示例

摘要

Parallel integration of automatic speech recognition (ASR) models and statistical machine translation (MT) models is an unexplored research area in comparison to the large amount of works done on integrating them in series, i.e., speech-to-speech translation. Parallel integration of these models is possible when we have access to the speech of a target language text and to its corresponding source language text, like a computer-assisted translation system. To our knowledge, only a few methods for integrating ASR models with MT models in parallel have been studied. In this paper, we systematically study a number of different translation models in the context of the N-best list rescoring. As an alternative to the N -best list rescoring, we use ASR word graphs in order to arrive at a tighter integration of ASR and MT models. The experiments are carried out on two tasks: English-to-German with an ASR vocabulary size of 17 K words, and Spanish-to-English with an ASR vocabulary of 58 K words. For the best method, the MT models reduce the ASR word error rate by a relative of 18% and 29% on the 17 K and the 58 K tasks, respectively.
机译:自动语音识别(ASR)模型和统计机器翻译(MT)模型的并行集成与将它们串联集成(即语音到语音翻译)的大量工作相比,是一个尚未探索的研究领域。当我们可以访问目标语言文本的语音及其对应的源语言文本(例如计算机辅助翻译系统)时,可以并行集成这些模型。据我们所知,仅研究了几种将ASR模型与MT模型并行集成的方法。在本文中,我们在N个最佳列表记录的背景下系统地研究了许多不同的翻译模型。作为N最佳列表记录的替代方法,我们使用ASR字图来实现ASR和MT模型的更紧密集成。实验是在两个任务上进行的:ASR词汇量为17 K单词的英语到德语,ASR词汇量为58 K单词的西班牙语到英语。对于最佳方法,MT模型在17 K和58 K任务上分别将ASR字错误率分别降低了18%和29%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号