首页> 外文期刊>IEEE transactions on audio, speech and language processing >Incorporating Model-Specific Score Distribution in Speaker Verification Systems
【24h】

Incorporating Model-Specific Score Distribution in Speaker Verification Systems

机译:将特定于模型的分数分布纳入说话者验证系统

获取原文
获取原文并翻译 | 示例

摘要

It has been shown that the authentication performance of a biometric system is dependent on the models/templates specific to a user. As a result, some users may be more easily recognized or impersonated than others. The various categories of users have been characterized by Doddington (1988). We refer to this unbalanced performance across users as the Doddington''s zoo effect. In the context of fusion, we argue that this effect is system-dependent, i.e., a user model that is easily impersonated (a lamb) in one system may be easily recognized in another system (a sheep). While in principle, a fusion system could be trained to cope with the changing animal behavior of users from system to system, the lack of training data makes it impossible. We believe that one major cause of the Doddington''s zoo effect is the variation of class conditional scores from one speaker model to another. We propose a two-level fusion framework that effectively realizes a fusion classifier adapted to each user. First, one applies a client-specific (or model-specific) score normalization procedure to each of the system outputs to be combined. Then, one feeds the resulting normalized outputs to a fusion classifier (common to all users) as input to obtain a final combined score. Two existing model-specific score normalization procedures are considered in this framework, i.e., F- and Z-norms. In addition to them, a novel score normalization method called model-specific log-likelihood ratio (MS-LLR) is also proposed. While Z-norm is impostor-centric, i.e., it makes use of only the impostor score statistics, F-norm and the proposed MS-LLR are client-impostor centric, i.e., they consider both the client and impostor score statistics simultaneously. Our findings based on the XM2VTS and the NIST2005 databases show that when client-impostor centric normalization procedures are used to implement the proposed two-level fusion framework, the r-esulting fusion classifier outperforms the conventional fusion classifier (without applying any user-specific score normalization) in the majority of experiments.
机译:已经表明,生物识别系统的认证性能取决于特定于用户的模型/模板。结果,某些用户可能比其他用户更容易被识别或假冒。 Doddington(1988)对各种类型的用户进行了表征。我们将这种跨用户的不平衡性能称为Doddington的动物园效应。在融合的情况下,我们认为这种影响是系统相关的,即,在一个系统中很容易被模仿(一只小羊)的用户模型可能在另一个系统(一只羊)中很容易被识别。虽然原则上可以训练融合系统来应对用户在系统之间变化的动物行为,但是缺乏训练数据使这成为不可能。我们认为,多丁顿动物园效应的一个主要原因是课堂条件得分从一种说话者模型到另一种说话者模型的变化。我们提出了一个两级融合框架,该框架可以有效地实现适合每个用户的融合分类器。首先,将客户特定的(或模型特定的)分数归一化过程应用于要组合的每个系统输出。然后,将输入的结果归一化后的输出作为输入输入到融合分类器(对所有用户通用)中,以获得最终的合并分数。在此框架中考虑了两个现有的特定于模型的分数归一化程序,即F规范和Z规范。除了它们,还提出了一种新的分数归一化方法,称为模型特定对数似然比(MS-LLR)。虽然Z范数以冒名顶替者为中心,即仅使用冒名顶替者分数统计,但F范数和拟议的MS-LLR以客户-冒名顶替者为中心,即他们同时考虑了客户和冒名顶替者分数统计。我们基于XM2VTS和NIST2005数据库的发现表明,当使用以客户-发布者为中心的标准化程序来实现建议的两级融合框架时,r结果融合分类器的性能优于常规融合分类器(不应用任何特定于用户的评分标准化)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号