首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Spatio–Temporal Speech Enhancement Technique Based on Generalized Eigenvalue Decomposition
【24h】

A Spatio–Temporal Speech Enhancement Technique Based on Generalized Eigenvalue Decomposition

机译:基于广义特征值分解的时空语音增强技术

获取原文
获取原文并翻译 | 示例

摘要

We present a new spatio-temporal algorithm for speech enhancement using microphone arrays. Our technique uses an iterative method for computing the generalized eigenvectors of the multichannel data as measured from the microphone array. Coefficient adaptation is performed using the spatio-temporal correlation coefficient sequences of the observed data. The technique avoids large matrix-vector multiplications and has lower computational resource requirements as compared to competing methods. The technique also does not require a calibrated microphone array and is applicable to a wide variety of noise types, including stationary correlated noise and nonstationary speech-like (e.g., babble) background noise. Application of the method to microphone array data in various environmental settings indicate that the procedure can achieve significant gains in signal-to-interference ratios (SIRs) even in low SIR environments, without introducing musical tone artifacts in the enhanced speech.
机译:我们提出了一种新的时空算法,用于使用麦克风阵列进行语音增强。我们的技术使用迭代方法来计算从麦克风阵列测得的多通道数据的广义特征向量。使用观测数据的时空相关系数序列执行系数适配。与竞争方法相比,该技术避免了大的矩阵向量乘法,并且对计算资源的要求较低。该技术也不需要校准的麦克风阵列,并且适用于各种各样的噪声类型,包括平稳的相关噪声和非平稳的类似于语音的声音(例如,胡言乱语)背景噪声。将该方法应用于各种环境设置中的麦克风阵列数据表明,即使在低SIR环境中,该过程也可以实现信噪比(SIR)的显着提高,而不会在增强的语音中引入音调伪像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号