首页> 外文期刊>IEEE transactions on audio, speech and language processing >Speech Recognition Using Augmented Conditional Random Fields
【24h】

Speech Recognition Using Augmented Conditional Random Fields

机译:使用增强条件随机场的语音识别

获取原文
获取原文并翻译 | 示例

摘要

Acoustic modeling based on hidden Markov models (HMMs) is employed by state-of-the-art stochastic speech recognition systems. Although HMMs are a natural choice to warp the time axis and model the temporal phenomena in the speech signal, their conditional independence properties limit their ability to model spectral phenomena well. In this paper, a new acoustic modeling paradigm based on augmented conditional random fields (ACRFs) is investigated and developed. This paradigm addresses some limitations of HMMs while maintaining many of the aspects which have made them successful. In particular, the acoustic modeling problem is reformulated in a data driven, sparse, augmented space to increase discrimination. Acoustic context modeling is explicitly integrated to handle the sequential phenomena of the speech signal. We present an efficient framework for estimating these models that ensures scalability and generality. In the TIMIT phone recognition task, a phone error rate of 23.0% was recorded on the full test set, a significant improvement over comparable HMM-based systems.
机译:最新的随机语音识别系统采用基于隐马尔可夫模型(HMM)的声学建模。尽管HMM是扭曲时间轴并为语音信号中的时间现象建模的自然选择,但它们的条件独立性限制了它们良好地建模频谱现象的能力。本文研究和开发了一种新的基于增强条件随机场(ACRF)的声学建模范例。该范例解决了HMM的一些局限性,同时保留了许多使它们成功的方面。特别是,在数据驱动的,稀疏的,扩大的空间中重新构造了声学建模问题,以增加区分度。明确集成了语音上下文建模,以处理语音信号的顺序现象。我们提供了一个有效的框架来估算这些模型,以确保可扩展性和通用性。在TIMIT电话识别任务中,完整的测试集记录了23.0%的电话错误率,与基于HMM的同类系统相比有了显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号