首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Hierarchical Bayesian Language Models for Conversational Speech Recognition
【24h】

Hierarchical Bayesian Language Models for Conversational Speech Recognition

机译:会话语音识别的多层贝叶斯语言模型

获取原文
获取原文并翻译 | 示例

摘要

Traditional $n$ -gram language models are widely used in state-of-the-art large vocabulary speech recognition systems. This simple model suffers from some limitations, such as overfitting of maximum-likelihood estimation and the lack of rich contextual knowledge sources. In this paper, we exploit a hierarchical Bayesian interpretation for language modeling, based on a nonparametric prior called Pitman–Yor process. This offers a principled approach to language model smoothing, embedding the power-law distribution for natural language. Experiments on the recognition of conversational speech in multiparty meetings demonstrate that by using hierarchical Bayesian language models, we are able to achieve significant reductions in perplexity and word error rate.
机译:传统的$ n $ -gram语言模型广泛用于最新的大型词汇语音识别系统中。这个简单的模型有一些局限性,例如最大似然估计的过拟合和缺乏丰富的上下文知识资源。在本文中,我们基于称为Pitman-Yor过程的非参数先验,利用分层贝叶斯解释进行语言建模。这为语言模型平滑提供了一种原则性的方法,嵌入了自然语言的幂律分布。在多方会议中识别对话语音的实验表明,通过使用分层贝叶斯语言模型,我们能够显着降低困惑度和单词错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号