首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Probabilistic Template-Based Chord Recognition
【24h】

Probabilistic Template-Based Chord Recognition

机译:基于概率模板的和弦识别

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a probabilistic approach to template-based chord recognition in music signals. The algorithm only takes chromagram data and a user-defined dictionary of chord templates as input data. No training or musical information such as key, rhythm, or chord transition models is required. The chord occurrences are treated as probabilistic events, whose probabilities are learned from the song using an expectation–maximization (EM) algorithm. The adaptative estimation of these probabilities (together with an ad-hoc postprocessing filtering) has the desirable effect of smoothing out spurious chords that would occur in our previous baseline work. Our algorithm is compared to various methods that entered the Music Information Retrieval Evaluation eXchange (MIREX) in 2008 and 2009, using a diverse set of evaluation metrics, some of which are new. The systems are tested on two evaluation corpuses; the first one is composed of the Beatles catalog (180 pop-rock songs) and the other one is constituted of 20 songs from various artists and music genres. Results show that our method outperforms state-of-the-art chord recognition systems.
机译:本文介绍了一种基于概率的音乐信号中基于模板的和弦识别方法。该算法仅将色谱图数据和用户定义的和弦模板字典作为输入数据。不需要训练或音乐信息,例如键,节奏或和弦过渡模型。和弦的出现被视为概率事件,其概率是使用期望最大化(EM)算法从歌曲中获悉的。对这些概率的自适应估计(以及临时的后处理过滤)具有消除在以前的基准工作中可能发生的虚假和弦的理想效果。我们的算法与使用各种评估指标集(其中一些是新的)与进入2008年和2009年进入音乐信息检索评估交换(MIREX)的各种方法进行了比较。该系统在两个评估语料库上进行了测试;第一个由甲壳虫乐队目录(180首流行摇滚歌曲)组成,第二个由20种来自不同艺术家和音乐流派的歌曲组成。结果表明,我们的方法优于最先进的和弦识别系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号