首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Linear Neural Network-Based Approach to Stereophonic Acoustic Echo Cancellation
【24h】

A Linear Neural Network-Based Approach to Stereophonic Acoustic Echo Cancellation

机译:基于线性神经网络的立体声回声消除方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a new adaptive filtering algorithm for stereophonic acoustic echo cancellation. This algorithm uses a linear single-layer feedforward neural network to efficiently decorrelate the tap-input vectors. It achieves an improvement in the misalignment convergence by means of applying the resulted decorrelated tap-input vectors to the coefficient update of the adaptive filters. The advantage of our approach as compared with existing techniques is that our algorithm, in use with the nonlinear preprocessor, can achieve a high rate of misalignment convergence without significantly degrading the quality and stereophonic image of the transmitted signals since our neural network operates on the tap-input vectors as opposed to the transmitted audio signals. We then show that we can achieve an efficient implementation for the proposed decorrelation method by considering the structure of the joint-input covariance matrix of the stereophonic signals.
机译:我们提出了一种新的自适应滤波算法,用于立体声回声消除。该算法使用线性单层前馈神经网络来有效地去相关抽头输入向量。通过将所得去相关的抽头输入向量应用于自适应滤波器的系数更新,可以改善失准收敛。与现有技术相比,我们的方法的优势在于,由于我们的神经网络在抽头上运行,因此与非线性预处理器配合使用的算法可以实现较高的失准收敛速率,而不会显着降低传输信号的质量和立体声图像。输入的向量与传输的音频信号相反。然后,我们表明,通过考虑立体声信号的联合输入协方差矩阵的结构,可以对所提出的解相关方法实现有效的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号