首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Time Series Models for Semantic Music Annotation
【24h】

Time Series Models for Semantic Music Annotation

机译:语义音乐注释的时间序列模型

获取原文
获取原文并翻译 | 示例

摘要

Many state-of-the-art systems for automatic music tagging model music based on bag-of-features representations which give little or no account of temporal dynamics, a key characteristic of the audio signal. We describe a novel approach to automatic music annotation and retrieval that captures temporal (e.g., rhythmical) aspects as well as timbral content. The proposed approach leverages a recently proposed song model that is based on a generative time series model of the musical content-the dynamic texture mixture (DTM) model-that treats fragments of audio as the output of a linear dynamical system. To model characteristic temporal dynamics and timbral content at the tag level, a novel, efficient, and hierarchical expectation-maximization (EM) algorithm for DTM (HEM-DTM) is used to summarize the common information shared by DTMs modeling individual songs associated with a tag. Experiments show learning the semantics of music benefits from modeling temporal dynamics.
机译:用于自动音乐标记的许多最新系统基于功能包表示模型音乐,这些功能很少或根本没有考虑到时间动态,这是音频信号的关键特性。我们描述了一种新颖的自动音乐注释和检索方法,该方法可以捕获时间(例如节奏)方面以及音色内容。提出的方法利用了最近提出的歌曲模型,该模型基于音乐内容的生成时间序列模型-动态纹理混合(DTM)模型-将音频片段视为线性动力系统的输出。为了在标签级别上对特征性时态动态和音色内容进行建模,DTM(HEM-DTM)的新颖,高效且分层的期望最大化(EM)算法用于总结DTM共享的公共信息,这些DTM对与标签。实验表明,学习音乐的语义可以从时间动态模型中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号