首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Sparse Reverberant Audio Source Separation via Reweighted Analysis
【24h】

Sparse Reverberant Audio Source Separation via Reweighted Analysis

机译:通过加权分析的稀疏混响音频源分离

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel algorithm for source signals estimation from an underdetermined convolutive mixture assuming known mixing filters. Most of the state-of-the-art methods are dealing with anechoic or short reverberant mixture, assuming a synthesis sparse prior in the time-frequency domain and a narrowband approximation of the convolutive mixing process. In this paper, we address the source estimation of convolutive mixtures with a new algorithm based on i) an analysis sparse prior, ii) a reweighting scheme so as to increase the sparsity, iii) a wideband data-fidelity term in a constrained form. We show, through theoretical discussions and simulations, that this algorithm is particularly well suited for source separation of realistic reverberation mixtures. Particularly, the proposed algorithm outperforms state-of-the-art methods on reverberant mixtures of audio sources by more than 2 dB of signal-to-distortion ratio on the BSS Oracle dataset.
机译:我们提出了一种新算法,用于在已知混合滤波器的情况下从不确定卷积混合物中估计源信号。假设在时频域中先验稀疏并且对卷积混合过程进行窄带近似,大多数最新技术都在处理消声或短混响混合物。在本文中,我们基于一种新算法来解决卷积混合物的源估计问题,该算法基于:i)分析稀疏先验; ii)重加权方案以增加稀疏性; iii)约束形式的宽带数据保真度项。通过理论讨论和仿真,我们表明该算法特别适合于真实混响混合物的信号源分离。尤其是,在BSS Oracle数据集上,所提出的算法在音频源的混响混合方面优于最新技术,其信噪比超过2 dB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号