首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Dynamic Combination of Automatic Speech Recognition Systems by Driven Decoding
【24h】

Dynamic Combination of Automatic Speech Recognition Systems by Driven Decoding

机译:通过驱动解码实现自动语音识别系统的动态组合

获取原文
获取原文并翻译 | 示例

摘要

Combining automatic speech recognition (ASR) systems generally relies on the posterior merging of the outputs or on acoustic cross-adaptation. In this paper, we propose an integrated approach where outputs of secondary systems are integrated in the search algorithm of a primary one. In this driven decoding algorithm (DDA), the secondary systems are viewed as observation sources that should be evaluated and combined to others by a primary search algorithm. DDA is evaluated on a subset of the ESTER I corpus consisting of 4 hours of French radio broadcast news. Results demonstrate DDA significantly outperforms vote-based approaches: we obtain an improvement of 14.5% relative word error rate over the best single-systems, as opposed to the the 6.7% with a ROVER combination. An in-depth analysis of the DDA shows its ability to improve robustness (gains are greater in adverse conditions) and a relatively low dependency on the search algorithm. The application of DDA to both and beam-search-based decoder yields similar performances.
机译:组合自动语音识别(ASR)系统通常依赖于输出的后合并或声学交叉适应。在本文中,我们提出了一种集成方法,其中将次级系统的输出集成到初级系统的搜索算法中。在此驱动解码算法(DDA)中,辅助系统被视为观察源,应通过主要搜索算法对其进行评估并与其他系统组合。 DDA是在ESTER I语料库的一个子集中进行评估的,该子集包含4个小时的法国广播新闻。结果表明,DDA明显优于基于投票的方法:相对于最佳的单系统,相对单词错误率提高了14.5%,而使用ROVER组合则为6.7%。对DDA的深入分析表明,它具有提高鲁棒性的能力(在不利条件下收益更大),并且对搜索算法的依赖性相对较低。 DDA在基于波束搜索的解码器和基于波束搜索的解码器上的应用都具有相似的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号