首页> 外文期刊>IEEE transactions on audio, speech and language processing >Corrections to 'Segmental minimum Bayes-risk decoding for automatic speech recognition'
【24h】

Corrections to 'Segmental minimum Bayes-risk decoding for automatic speech recognition'

机译:对“用于自动语音识别的分段最小贝叶斯风险解码”的更正

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to correct and expand upon the experimental results presented in our recently published paper [1]. In [1, Sec. III-B], we present a risk-based lattice cutting (RLC) procedure to segment ASR word lattices into sequences of smaller sublattices. The purpose of this procedure is to restructure the original lattice to improve the efficiency of minimum Bayes-risk (MBR) and other lattice rescoring procedures. Given that the segmented lattices are to be rescored, it is crucial that no paths from the original lattice be lost in the segmentation process. In the experiments reported in our original publication, some of the original paths were inadvertently discarded from the segmented lattices. This affected the performance of the MBR results presented. In this paper, we briefly review the segmentation algorithm and explain the flaw in our previous experiments. We find consistent minor improvements in word error rate (WER) under the corrected procedure. More importantly, we report experiments confirming that the lattice segmentation procedure does indeed preserve all the paths in the original lattice.
机译:本文的目的是纠正和扩展我们最近发表的论文[1]中提供的实验结果。在[1,秒III-B],我们提出了一种基于风险的网格切割(RLC)程序,可将ASR单词网格划分为较小的子网格序列。此过程的目的是重组原始晶格,以提高最小贝叶斯风险(MBR)和其他晶格记录过程的效率。鉴于要重新分割分割后的晶格,至关重要的是,在分割过程中,不会丢失来自原始晶格的路径。在我们原始出版物中报道的实验中,一些原始路径被无意中从分割的晶格中丢弃了。这影响了所显示的MBR结果的性能。在本文中,我们简要回顾了分割算法并解释了先前实验中的缺陷。我们发现在经过纠正的程序下,单词错误率(WER)始终保持较小的提高。更重要的是,我们报告的实验证实了晶格分割过程确实保留了原始晶格中的所有路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号