首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Autoregressive Models for Statistical Parametric Speech Synthesis
【24h】

Autoregressive Models for Statistical Parametric Speech Synthesis

机译:统计参数语音合成的自回归模型

获取原文
获取原文并翻译 | 示例

摘要

We propose using the autoregressive hidden Markov model (HMM) for speech synthesis. The autoregressive HMM uses the same model for parameter estimation and synthesis in a consistent way, in contrast to the standard approach to statistical parametric speech synthesis. It supports easy and efficient parameter estimation using expectation maximization, in contrast to the trajectory HMM. At the same time its similarities to the standard approach allow use of established high quality synthesis algorithms such as speech parameter generation considering global variance. The autoregressive HMM also supports a speech parameter generation algorithm not available for the standard approach or the trajectory HMM and which has particular advantages in the domain of real-time, low latency synthesis. We show how to do efficient parameter estimation and synthesis with the autoregressive HMM and look at some of the similarities and differences between the standard approach, the trajectory HMM and the autoregressive HMM. We compare the three approaches in subjective and objective evaluations. We also systematically investigate which choices of parameters such as autoregressive order and number of states are optimal for the autoregressive HMM.
机译:我们建议使用自回归隐马尔可夫模型(HMM)进行语音合成。与统计参数语音合成的标准方法相比,自回归HMM以一致的方式使用相同的模型进行参数估计和合成。与轨迹HMM相比,它支持使用期望最大化进行简单有效的参数估计。同时,它与标准方法的相似之处允许使用已建立的高质量综合算法,例如考虑全局方差的语音参数生成。自回归HMM还支持语音参数生成算法,该算法对于标准方法或轨迹HMM不可用,并且在实时,低延迟合成领域具有特殊优势。我们展示了如何使用自回归HMM进行有效的参数估计和综合,并探讨了标准方法,轨迹HMM和自回归HMM之间的一些异同。我们比较了主观和客观评估中的三种方法。我们还系统地研究了诸如自回归阶数和状态数之类的参数选择对于自回归HMM是最佳的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号