首页> 外文期刊>Computer speech and language >Excitation modelling using epoch features for statistical parametric speech synthesis
【24h】

Excitation modelling using epoch features for statistical parametric speech synthesis

机译:使用纪元特征进行激励建模以进行统计参数语音合成

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel excitation modelling method is proposed for improving the naturalness of statistical parametric speech synthesis (SPSS). In the proposed approach, the excitation or residual signal is parameterized by using features extracted from the epochs. The epoch parameters used in this work are epoch strength and sharpness. These features are modeled in the statistical framework along with other parameters. During synthesis, the excitation signal is constructed by imposing the generated epoch parameters on the natural instances of excitation signal. The effectiveness of the proposed method is evaluated in the framework of hidden Markov model (HMM)-based and deep neural network (DNN)-based SPSS. Evaluation results have shown that the SPSS systems developed using the proposed excitation model are capable of synthesizing more natural sounding speech compared to the ones based on two state-of-the-art excitation modelling approaches.
机译:为了提高统计参数语音合成(SPSS)的自然性,提出了一种新颖的激励建模方法。在提出的方法中,通过使用从历元提取的特征来对激励信号或残余信号进行参数化。在这项工作中使用的纪元参数是纪元强度和清晰度。这些功能与其他参数一起在统计框架中建模。在合成期间,通过将生成的历元参数强加于激励信号的自然实例来构造激励信号。在基于隐马尔可夫模型(HMM)和基于深度神经网络(DNN)的SPSS框架内评估了该方法的有效性。评估结果表明,与基于两种最新的激励建模方法的SPSS系统相比,使用所提出的激励模型开发的SPSS系统能够合成更自然的语音。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号