首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Comparison and Combination of Lightly Supervised Approaches for Language Portability of a Spoken Language Understanding System
【24h】

Comparison and Combination of Lightly Supervised Approaches for Language Portability of a Spoken Language Understanding System

机译:口语理解系统的语言可移植性的轻监督方法的比较和组合

获取原文
获取原文并翻译 | 示例

摘要

Portability of a spoken dialogue system (SDS) to a new domain or a new language is a hot topic as it may imply gains in time and cost for building new SDSs. In particular in this paper we investigate several fast and efficient approaches for language portability of the spoken language understanding (SLU) module of a dialogue system. We show that the use of statistical machine translation (SMT) can reduce the time and the cost of porting a system from a source to a target language. For conceptual decoding, a state-of-the-art module based on conditional random fields (CRF) is used and a new approach based on phrase-based statistical machine translation (PB-SMT) is also evaluated. The experimental results show the efficiency of the proposed methods for a fast and low cost SLU language portability. In addition, we propose two methods to increase SLU robustness to translation errors. Overall, it is shown that the combination of all these approaches can further reduce the concept error rate. While most of the experiments in this paper deal with portability from French to Italian (given the availability of the Media French corpus and its subset manually translated into Italian), a validation of our methodology is eventually proposed in Arabic.
机译:口语对话系统(SDS)到新域或新语言的可移植性是一个热门话题,因为它可能意味着在构建新SDS上会花费时间和成本。特别是在本文中,我们研究了几种快速有效的方法来提高对话系统的口语理解(SLU)模块的语言可移植性。我们证明了使用统计机器翻译(SMT)可以减少从源语言到目标语言的系统移植时间和成本。对于概念解码,使用了基于条件随机字段(CRF)的最新模块,并且还评估了基于基于短语的统计机器翻译(PB-SMT)的新方法。实验结果表明,所提出的方法对于快速和低成本的SLU语言可移植性是有效的。此外,我们提出了两种方法来提高SLU对翻译错误的鲁棒性。总的来说,表明所有这些方法的组合可以进一步降低概念错误率。尽管本文中的大多数实验都涉及从法语到意大利语的可移植性(鉴于Media French语料库及其子集已手动翻译为意大利语),但最终还是用阿拉伯语提出了对我们方法论的验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号