首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >On-Line Melody Extraction From Polyphonic Audio Using Harmonic Cluster Tracking
【24h】

On-Line Melody Extraction From Polyphonic Audio Using Harmonic Cluster Tracking

机译:使用和声群跟踪从和弦音频中进行在线旋律提取

获取原文
获取原文并翻译 | 示例

摘要

Extraction of predominant melody from the musical performances containing various instruments is one of the most challenging task in the field of music information retrieval and computational musicology. This paper presents a novel framework which estimates predominant vocal melody in real-time by tracking various sources with the help of harmonic clusters (combs) and then determining the predominant vocal source by using the harmonic strength of the source. The novel on-line harmonic comb tracking approach complies with both structural as well as temporal constraints simultaneously. It relies upon the strong higher harmonics for robustness against distortion of the first harmonic due to low frequency accompaniments, in contrast to the existing methods which track the pitch values. The predominant vocal source identification depends upon the novel idea of source dependant filtering of recognition score, which allows the algorithm to be implemented on-line. The proposed method, although on-line, is shown to significantly outperform our implementation of a state-of-the-art offline method for vocal melody extraction. Evaluations also show the reduction in octave error and the effectiveness of novel score filtering technique in enhancing the performance.
机译:从包含各种乐器的演奏中提取主要旋律是音乐信息检索和计算音乐学领域中最具挑战性的任务之一。本文提出了一种新颖的框架,该框架可通过在谐波簇(梳子)的帮助下跟踪各种声源,然后利用声源的谐波强度来确定声源,从而实时估计声乐的主要旋律。新颖的在线谐波梳状跟踪方法同时符合结构和时间约束。与跟踪音调值的现有方法相比,它依靠强大的高次谐波来抵抗由于低频伴奏而引起的一次谐波失真。主要的声音源识别取决于识别分数的源依赖过滤的新思想,这使得该算法可以在线实现。所提出的方法尽管在线,但已显示出明显优于我们对声乐旋律提取的最新离线方法的实现。评估还显示出八度音阶误差的减少以及新颖的分数过滤技术在增强性能方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号