首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Simultaneous Optimization of Acoustic Echo Reduction, Speech Dereverberation, and Noise Reduction against Mutual Interference
【24h】

Simultaneous Optimization of Acoustic Echo Reduction, Speech Dereverberation, and Noise Reduction against Mutual Interference

机译:同时优化声学回声降低,语音去混响和降低噪声以防止相互干扰

获取原文
获取原文并翻译 | 示例

摘要

We propose an optimized speech enhancement method that combines acoustic echo reduction, speech dereverberation, and noise reduction in a unified framework. Normally, partial optimization of acoustic echo reduction, speech dereverberation, and noise reduction does not lead to total optimization. A cascade method of multiple functions causes mutual interference between these functions and degrades eventual speech enhancement performance. Unlike cascade methods, the proposed method combines all functions to optimize eventual speech enhancement performance based on a unified framework, which is also robust against the mutual interference problem. With the proposed method, in addition to time-invariant linear filters, time-varying filters are used to reduce residual reverberation, residual acoustic echo signal, and background noise signal which cannot be reduced using time-invariant filters. These time-invariant filters and time-varying filters are also optimized based on a unified likelihood function to avoid the mutual interference problem. By combining the time-invariant linear filters and the time-varying filters, the proposed method uses a local Gaussian model with a full-rank covariance matrix and a non-zero average vector as a probabilistic model of the microphone input signal. In the local Gaussian model, non-stationary characteristics of speech sources are considered to effectively enhance speech sources. Under this probabilistic model, all the parameters are optimized simultaneously based on the expectation-maximization algorithm and calculates a minimum mean squared error estimate of a desired signal. The experimental results show that the proposed method is superior to the cascade methods.
机译:我们提出了一种优化的语音增强方法,该方法在统一的框架中结合了声学回声降低,语音去混响和噪声降低。通常,声学回声降低,语音混响和噪声降低的部分优化不会导致整体优化。多种功能的级联方法会导致这些功能之间的相互干扰,并最终降低语音增强性能。与级联方法不同,该方法在统一框架的基础上结合了所有功能,以优化最终的语音增强性能,这对于相互干扰问题也很强大。利用所提出的方法,除了时不变线性滤波器之外,时变滤波器还用于减少残留混响,残留声学回声信号和背景噪声信号,而残留时混响,残留声学回声信号和背景噪声信号是使用时不变滤波器无法降低的。这些时不变滤波器和时变滤波器也基于统一的似然函数进行了优化,以避免了相互干扰的问题。通过结合时不变线性滤波器和时变滤波器,该方法将具有高阶协方差矩阵和非零平均矢量的局部高斯模型用作麦克风输入信号的概率模型。在局部高斯模型中,语音源的非平稳特征被认为可以有效地增强语音源。在该概率模型下,所有参数均基于期望最大化算法同时进行优化,并计算所需信号的最小均方误差估计。实验结果表明,该方法优于级联方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号