首页> 外文期刊>Atmospheric environment >A new modeling approach for assessing the contribution of industrial and traffic emissions to ambient NO_X concentrations
【24h】

A new modeling approach for assessing the contribution of industrial and traffic emissions to ambient NO_X concentrations

机译:一种评估工业和交通排放对环境NO_X浓度贡献的新建模方法

获取原文
获取原文并翻译 | 示例

摘要

The Optimized Dispersion Model (ODM) is uniquely capable of incorporating emission estimates, ambient air quality monitoring data and meteorology to provide reliable high-resolution (in both time and space) air quality estimates using non-linear regression. However, it was so far not capable of describing the effects of emissions from elevated sources. We formulated an additional term to extend the ODM such that these sources can be accounted for, and implemented it in modeling the fine spatiotemporal patterns of ambient NOx concentrations over the coastal plain of Israel. The diurnal and seasonal variation in the contribution of industry to the ambient NOx is presented, as well as its spatial features. Although industrial stacks are responsible for 88% of the NOx emissions in the study area, their contribution to ambient NOx levels is generally about 2% with a maximal upper bound of 27%. Meteorology has a major role in this source allocation, with the highest impact of industry in the summer months, when the wind is blowing inland past the coastal stacks and vertical mixing is substantial. The new Optimized Dispersion Model (ODM) out-performs both Inverse-Distance-Weighing (IDW) interpolation and a previous ODM version in predicting ambient NOx concentrations. The performance of the new model is thoroughly assessed.
机译:优化分散模型(ODM)具有独特的能力,可以结合排放估算,周围空气质量监测数据和气象学,以使用非线性回归提供可靠的高分辨率(在时间和空间上)的空气质量估算。但是,到目前为止,它还不能描述高架排放源的影响。我们制定了一个额外的术语来扩展ODM,以便可以解释这些来源,并在模拟以色列沿海平原周围NOx浓度的精细时空模式时加以实施。介绍了工业对环境NOx贡献的每日和季节性变化及其空间特征。尽管工业烟囱占研究区域内88%的NOx排放的原因,但它们对环境NOx含量的贡献通常约为2%,最大上限为27%。气象在这种能源分配中起着重要作用,在夏季,当风向内陆吹过沿海烟囱并且垂直混合很大时,对工业的影响最大。新的优化分散模型(ODM)在预测环境NOx浓度方面优于反距离称重(IDW)内插法和以前的ODM版本。对新模型的性能进行了全面评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号