首页> 外文期刊>Atmospheric environment >High-resolution spatiotemporal mapping of PM_(2.5) concentrations at Mainland China using a combined BME-GWR technique
【24h】

High-resolution spatiotemporal mapping of PM_(2.5) concentrations at Mainland China using a combined BME-GWR technique

机译:结合BME-GWR技术的中国大陆PM_(2.5)浓度的高分辨率时空图

获取原文
获取原文并翻译 | 示例

摘要

With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R-2 = 0.883, RMSE = 11.39 mu g/m(3)) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015 Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.
机译:随着经济的快速发展,工业化和城市化的发展,周围空气中的PM2.5已成为与呼吸系统,心脏和肺部疾病相关的主要污染物。在中国,PM2.5污染是引起公众广泛关注的极端环境和社会问题。在这项工作中,我们使用综合技术从卫星衍生的气溶胶光学深度(AOD),地形数据,气象数据和污染物排放估算地面PM2.5。尤其是,将地理加权回归(GWR)分析与贝叶斯最大熵(BME)理论相结合,以评估中国大部分地区PM2.5暴露的时空特征,并产生有益的PM2.5时空预测(估计)。已经发现,由于其综合性,与以前的技术相比,组合的BME-GWR方法在中国对PM2.5浓度的时空预测方面提供了某些改进。结合BME-GWR技术生成了真实的时空PM2.5分布图,其性能在预测准确性方面优于之前的七项关于中国卫星PM2.5浓度的研究。纯粹的空间GWR模型只能在固定时间使用,而集成的BME-GWR方法考虑了跨时空相关性,并且可以预测复合时空中的PM2.5浓度。 BME-GWR建模的10倍结果(R-2 = 0.883,RMSE = 11.39μg / m(3))显示了中国高水平的时空PM2.5预测(估计)准确性,揭示了一定的从北部沿海地区到中国内陆的严重PM2.5水平变化趋势(2015年11月,2016年2月)。未来的工作应侧重于添加更高分辨率的AOD数据,开发更好的基于卫星的预测模型以及用于时空PM2.5预测目的的相关空气污染物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号