首页> 外文期刊>The Astrophysical journal >THERMAL PROCESSING OF SILICATE DUST IN THE SOLAR NEBULA: CLUES FROM PRIMITIVE CHONDRITE MATRICES
【24h】

THERMAL PROCESSING OF SILICATE DUST IN THE SOLAR NEBULA: CLUES FROM PRIMITIVE CHONDRITE MATRICES

机译:太阳胶状硅酸盐粉尘的热加工:基性方铁矿基质的线索

获取原文
获取原文并翻译 | 示例
           

摘要

The most abundant matrix minerals in chondritic meteorites—hydrated phyllosilicates and ferrous olivine crystals—formed predominantly in asteroids during fluid-assisted metamorphism. We infer that they formed from minerals present in three less altered carbonaceous chondrites that have silicate matrices composed largely of micrometer- and nanometer-sized grains of crystalline forsterite Mg_2SiO_4 and enstatite MgSiO_3 and amorphous, ferromagnesian silicate. Compositional and structural features of enstatite and forsterite suggest that they formed as condensates that cooled below 1300 K at ~1000 K hr~(-1). Most amorphous silicates are likely to be solar nebula condensates also, as matrix, which is approximately solar in composition, is unlikely to be a mixture of genetically unrelated materials with different compositions. Since chondrules cooled at 10-1000 K hr~(-1) and matrix and chondrules are chemically complementary, most matrix silicates probably formed close to chondrules in transient heating events. Shock heating is favored, as nebular shocks capable of melting millimeter-sized aggregates vaporize dust. The crystalline and amorphous silicates in the primitive chondrite matrices share many characteristic features with silicates in chondritic interplanetary dust particles, suggesting that most of the crystalline silicates and possibly some amorphous silicates in the interplanetary dust particles are also nebular condensates. Except for small amounts of refractory oxides from the innermost region where refractory inclusions formed and presolar dust, most of the crystalline silicate dust that accreted into chondritic asteroids and long-period comets appears to have formed from shock heating at ~2-10 AU. Forsterite crystals around young stars may have a similar origin.
机译:在流体辅助的变质过程中,粒状陨石中最丰富的基质矿物(水合页硅酸盐和橄榄石亚铁晶体)主要形成于小行星中。我们推断它们是由存在于三种变化不大的碳质球粒陨石中的矿物形成的,这些球状陨石的硅酸盐基质主要由微米级和纳米级的结晶镁橄榄石Mg_2SiO_4和顽辉石MgSiO_3以及无定形的铁镁硅酸盐组成。顽辉石和镁橄榄石的组成和结构特征表明它们是在〜1000 K hr〜(-1)时冷却至1300 K以下的冷凝物而形成的。大多数无定形硅酸盐也可能是太阳星云的冷凝物,因为基质的成分近似为太阳,不太可能是具有不同成分的遗传无关材料的混合物。由于球状晶体在10-1000 K hr〜(-1)下冷却,并且基体和球状晶体在化学上是互补的,因此在瞬态加热事件中,大多数基质硅酸盐很可能在球状晶体附近形成。震动加热很受欢迎,因为能够熔化毫米级聚集体的星状震动会蒸发灰尘。原始球粒陨石基质中的结晶和无定形硅酸盐与粒状行星际尘埃颗粒中的硅酸盐具有许多特征,这表明行星际尘埃颗粒中的大多数结晶硅酸盐以及可能的某些非晶态硅酸盐也是星云状凝结物。除了最内层难熔夹杂物形成的少量难熔氧化物和太阳前尘埃外,大多数晶体硅酸盐粉尘会沉积在粒状小行星和长周期彗星中,是在〜2-10 AU的激波加热下形成的。年轻恒星周围的镁橄榄石晶体可能具有相似的起源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号