...
首页> 外文期刊>The Astrophysical journal >ADAPTIVE SMOOTH PARTICLE HYDRODYNAMICS AND PARTICLE-PARTICLE COUPLED CODES: ENERGY AND ENTROPY CONSERVATION
【24h】

ADAPTIVE SMOOTH PARTICLE HYDRODYNAMICS AND PARTICLE-PARTICLE COUPLED CODES: ENERGY AND ENTROPY CONSERVATION

机译:自适应平滑粒子水动力学和粒子-粒子耦合编码:能量和熵守恒

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present and test a general purpose code, called PPASPH, for evolving self-gravitating fluids in astrophysics, both with and without a collisionless component. In PPASPH, hydrodynamical properties are computed by using the SPH (smoothed particle hydrodynamics) method while, unlike most previous implementations of SPH, gravitational forces are computed by a PP (particle-particle) approach. Other important features of this code are as follows: (1) PPASPH takes into account the contributions of all particles to the gravitational and hydrodynamical forces on any other particle. This results in a better energy conservation. (2) Smoothing lengths are updated by an iterative procedure that ensures an exactly constant number of neighbors around each gas particle. (3) Cooling processes have been implemented in an integrated form that includes a special treatment to avoid a nonphysical catastrophic cooling phenomenon. Such a procedure ensures that cooling does not limit the time step. (4) Hydrodynamics equations optionally include the correction terms (hereafter ▽h terms) appearing when h(t, r) is not constant. Our code has been implemented by using the data parallel programming model on the Connection Machine (CM), which allows for an efficient unification of the SPH and PP methods with costs per time step growing as ~N. PPASPH has been applied to study the importance of adaptive smoothing correction terms on the entropy conservation. We confirm Hernquist's interpretation of the entropy violation observed in previous SPH simulations as a result of having neglected these terms. An improvement on the entropy conservation is not found by merely considering larger numbers of particles or different N_s choices. The correct continuum description is only obtained if the ▽h correction terms are included. Otherwise, the entropy conservation is always rather poor as compared to that found for the total energy.
机译:我们提出并测试了一个通用程序代码,称为PPASPH,用于在有无碰撞组件的情况下在天体物理学中发展自重流体。在PPASPH中,通过使用SPH(平滑粒子流体动力学)方法来计算流体力学特性,而与大多数以前的SPH实施方式不同,重力是通过PP(粒子-颗粒)方法来计算的。该规范的其他重要特征如下:(1)PPASPH考虑了所有粒子对任何其他粒子上的重力和水动力的贡献。这导致更好的节能。 (2)通过迭代过程更新平滑长度,该过程可确保每个气体粒子周围的邻居数完全恒定。 (3)冷却过程以集成形式实施,包括特殊处理,以避免非物理灾难性冷却现象。这样的程序确保冷却不限制时间步长。 (4)流体力学方程式可选地包括当h(t,r)不恒定时出现的校正项(以下称为▽h项)。我们的代码是通过使用连接机器(CM)上的数据并行编程模型来实现的,该模型可以有效地统一SPH和PP方法,并且每步成本增长为〜N。 PPASPH已用于研究自适应平滑校正项对熵守恒的重要性。由于忽略了这些术语,我们确认了Hernquist对先前SPH模拟中观察到的熵违背的解释。仅通过考虑更多数量的粒子或不同的N_s选择并没有发现对熵守恒的改进。仅当包含▽h校正项时,才能获得正确的连续体描述。否则,与总能量的熵守恒相比,熵守恒总是很差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号