首页> 外文期刊>Acta astronautica >Effect of discharge chamber geometry on ion loss in microwave discharge ion thruster
【24h】

Effect of discharge chamber geometry on ion loss in microwave discharge ion thruster

机译:放电室几何形状对微波排放离子推进器中离子损耗的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The authors redesigned the discharge chamber for the mu 10 microwave discharge ion thruster to improve its thrust performance and succeeded in enhancing the maximum beam current and thrust efficiency. However, it was found that the ion current ratio extracted from the discharge chamber with the redesigned configuration was lower than that obtained with the original configuration. To investigate the relationship between ion extraction and the magnetic field geometry, the ion loss current distribution in these two types of discharge chamber were measured by electrostatic probes. Using planar probes with a guard ring, the ion current that flowed into the wall was measured without disturbing the ion beam current. The results show that ionization occurs mainly near the upstream magnet. In addition, the ion flux on the sidewall in the redesigned discharge chamber is about 1.5-2 times larger than that in the original discharge chamber. This suggests that the distance between the edge of the plasmaproduction region and the chamber wall with consideration of the Larmor radius of ions is an important parameter in discharge chamber design. In addition, although the ion beam current showed a tendency to saturate at high microwave power, the ion loss to each part in the discharge chamber increased in proportion to input microwave power. The decrease in the extracted ion ratio in the redesigned discharge chamber is considered to be caused by a decrease in the electrostatic ion transparency of the screen grid. Therefore, in a well-tuned microwave discharge ion thruster, it is difficult to improve the thrust efficiency by increasing the discharge power. A design that suppresses the wall loss of ions is thus important.
机译:作者重新设计了用于MU 10微波排放离子推进器的排出室,以提高其推力性能,并成功增强最大光束电流和推力效率。然而,发现从排出室提取的离子电流比与重新设计的配置低于用原始配置获得的离子电流比。为了研究离子提取和磁场几何形状之间的关系,通过静电探针测量这两种排出室中的离子损耗电流分布。使用具有保护环的平面探针,测量流入壁的离子电流而不会扰乱离子束电流。结果表明,电离主要在上游磁体附近发生。另外,重新设计的排出室中的侧壁上的离子通量比原始排出室中的侧壁约为1.5-2倍。这表明,具有考虑到离子的马达半径的离子分布区域和腔室壁之间的距离是放电室设计中的重要参数。另外,尽管离子束电流显示在高微波功率下饱和的趋势,但排出室中的每个部分的离子损耗与输入微波功率成比例地增加。重新设计的放电室中提取的离子比的降低被认为是由屏幕网格的静电离子透明度的降低引起的。因此,在良好调整的微波放电离子推进器中,难以通过增加放电功率来提高推力效率。因此,抑制离子壁丧失的设计是重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号