首页> 外文学位 >A multiple-cathode, high-power, rectangular ion thruster discharge chamber of increasing thruster lifetime.
【24h】

A multiple-cathode, high-power, rectangular ion thruster discharge chamber of increasing thruster lifetime.

机译:多阴极大功率矩形离子推进器放电室,可延长推进器寿命。

获取原文
获取原文并翻译 | 示例

摘要

Ion thrusters are high-efficiency, high-specific impulse space propulsion systems proposed for deep space missions requiring thruster operational lifetimes of 7--14 years. One of the primary ion thruster components is the discharge cathode assembly (DCA). The DCA initiates and sustains ion thruster operation. Contemporary ion thrusters utilize one molybdenum keeper DCA that lasts only ∼30,000 hours (∼3 years), so single-DCA ion thrusters are incapable of satisfying the mission requirements. The aim of this work is to develop an ion thruster that sequentially operates multiple DCAs to increase thruster lifetime. If a single-DCA ion thruster can operate 3 years, then perhaps a triple-DCA thruster can operate 9 years.; Initially, a multiple-cathode discharge chamber (MCDC) is designed and fabricated. Performance curves and grid-plane current uniformity indicate operation similar to other thrusters. Specifically, the configuration that balances both performance and uniformity provides a production cost of 194 W/A at 89% propellant efficiency with a flatness parameter of 0.55.; One of the primary MCDC concerns is the effect an operating DCA has on the two dormant cathodes. Multiple experiments are conducted to determine plasma properties throughout the MCDC and near the dormant cathodes, including using "dummy" cathodes outfitted with plasma diagnostics and internal plasma property mapping. Results are utilized in an erosion analysis that suggests dormant cathodes suffer a maximum pre-operation erosion rate of 5--15 mum/khr (active DCA maximum erosion is 70 mum/khr). Lifetime predictions indicate that triple-DCA MCDC lifetime is approximately 2.5 times longer than a single-DCA thruster. Also, utilization of new keeper materials, such as carbon graphite, may significantly decrease both active and dormant cathode erosion, leading to a further increase in thruster lifetime.; Finally, a theory based on the near-DCA plasma potential structure and propellant flow rate effects is developed to explain active DCA erosion. The near-DCA electric field pulls ions into the DCA such that they bombard and erode the keeper. Charge-exchange collisions between bombarding ions and DCA-expelled neutral atoms reduce erosion. The theory explains ion thruster long-duration wear-test results and suggests increasing propellant flow rate may eliminate or reduce DCA erosion.
机译:离子推进器是针对需要7--14年推进器工作寿命的深空任务而提出的高效,高比冲动空间推进系统。主要的离子推进器组件之一是放电阴极组件(DCA)。 DCA启动并维持离子推进器的运行。当代的离子推进器使用一个仅能维持约30,000小时(约3年)的钼保持器DCA,因此单DCA离子推进器无法满足任务要求。这项工作的目的是开发一种离子推进器,该推进器顺序操作多个DCA以延长推进器寿命。如果单DCA离子推进器可以运行3年,那么三DCA离子推进器则可以运行9年。最初,设计和制造了多阴极放电室(MCDC)。性能曲线和网格平面电流均匀性表明操作类似于其他推进器。具体地说,兼顾性能和均匀性的配置在89%推进剂效率和0.55平坦度参数下提供了194 W / A的生产成本。 MCDC的主要问题之一是操作DCA对两个休眠阴极的影响。进行了多次实验来确定整个MCDC以及在休眠阴极附近的等离子体性能,包括使用配备了等离子体诊断和内部等离子体性能映射的“虚拟”阴极。在腐蚀分析中利用的结果表明,休眠阴极遭受的最大术前腐蚀速率为5--15 mum / khr(活动DCA最大腐蚀为70 mum / khr)。使用寿命预测表明,三重DCA MCDC寿命大约是单重DCA推进器的2.5倍。同样,使用新的保持器材料(例如碳石墨)可能会显着降低活性和休眠阴极腐蚀,从而进一步延长推进器寿命。最后,建立了基于近DCA等离子体电势结构和推进剂流速效应的理论来解释主动DCA腐蚀。接近DCA的电场将离子拉入DCA,使它们轰击并侵蚀保持器。轰击离子和DCA驱除的中性原子之间的电荷交换碰撞减少了腐蚀。该理论解释了离子推进器的长期磨损测试结果,并提出增加推进剂流速可以消除或减少DCA腐蚀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号