首页> 外文期刊>Assembly Automation >Improved multi-objective cuckoo search algorithm with novel search strategies for point-to-point part feeding scheduling problems of automotive assembly lines
【24h】

Improved multi-objective cuckoo search algorithm with novel search strategies for point-to-point part feeding scheduling problems of automotive assembly lines

机译:改进了多目标杜鹃搜索算法,具有新颖的搜索策略,用于汽车装配线的点对点部分馈送调度问题

获取原文
获取原文并翻译 | 示例

摘要

Purpose - This paper aims to investigate the part feeding scheduling problem with electric vehicles (EVs) for automotive assembly lines. A point-to-point part feeding model has been formulated to minimize the number of EVs and the maximum handling time by specifying the EVs and sequence of all the delivery tasks. Design/methodology/approach - First, a mathematical programming model of point-to-point part feeding scheduling problem (PTPPFSP) with EVs is presented. Because the PTPPFSP is NP-hard, an improved multi-objective cuckoo search (IMCS) algorithm is developed with novel search strategies, possessing the self-adaptive Levy flights, the Gaussian mutation and elite selection strategy to strengthen the algorithm's optimization performance. In addition, two local search operators are designed for deep optimization. The effectiveness of the IMCS algorithm is verified by dealing with the PTPPFSP in different problem scales. Findings - Numerical experiments are used to demonstrate how the IMCS algorithm serves as an efficient method to solve the PTPPFSP with EVs. The effectiveness and feasibility of the IMCS algorithm are validated by approximate Pareto fronts obtained from the instances of different problem scales. The computational results show that the IMCS algorithm can achieve better performance than the other high-performing algorithms in terms of solution quality, convergence and diversity. Research limitations/implications - This study is applicable without regard to the breakdown of EVs. The current research contributes to the scheduling of in-plant logistics for automotive assembly lines, and it could be modified to cope with similar part feeding scheduling problems characterized by just-in-time (JIT) delivery. Originality/value - Both limited electricity capacity and no earliness and tardiness constraints are considered, and the scheduling problem is solved satisfactorily and innovatively for an efficient JIT part feeding with EVs applied to in-plant logistics.
机译:目的 - 本文旨在调查汽车装配线电动车(EV)的零件送入调度问题。已经制定了点对点部分进给模型以通过指定所有传送任务的EV和序列来最小化EVS和最大处理时间的数量。呈现设计/方法/方法 - 首先,提出了具有EVS的点对点部分馈送调度问题(PTPPFSP)的数学编程模型。由于PTPPFSP是NP - 硬,因此具有新的搜索策略,具有新的搜索策略,具有自适应征集航班,高斯突变和精英选择策略,以加强算法的优化性能的改进的多目标杜鹃搜索(IMCS)算法。此外,两个本地搜索操作员设计用于深度优化。通过在不同问题尺度中处理PTPPFSP来验证IMCS算法的有效性。发现 - 数值实验用于演示IMCS算法如何用作用EVS解决PTPPFSP的有效方法。通过从不同问题尺度的实例获得的近似帕累托前线来验证IMCS算法的有效性和可行性。计算结果表明,在解决方案质量,收敛和多样性方面,IMCS算法可以实现比其他高性能算法更好的性能。研究限制/影响 - 本研究适用于evs的崩溃。目前的研究有助于汽车装配线的植物内物流的调度,可以修改以应对类似的部分供给调度问题,其特征在于即时(JIT)递送。原创性/值 - 考虑有限的电力容量和没有充分的和迟到的约束,并且调度问题令人满意地解决了应用于植物内物流的EVS的高效JIT部分。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号