首页> 外文期刊>Assembly Automation >Design and control of a climbing robot for inspection of high mast lighting
【24h】

Design and control of a climbing robot for inspection of high mast lighting

机译:用于检查高杆照明的攀爬机器人的设计和控制

获取原文
获取原文并翻译 | 示例

摘要

Purpose This paper aims to develop a climbing robot to help people inspect lamps of high-mast lighting. Design/methodology/approach The robot consists of driving mechanism, suspension mechanism and compression mechanism. The driving mechanism is realized by link chains and sprockets, which are arranged opposite to each other, to form a dual caterpillar mechanism. The compression mechanism squeezes the caterpillar, and rubber feet "grasps" the steel rope to generate enough adhesion forces. The suspension mechanism is used to compensate the contraction or extension of the chains. The robot is equipped with a DC motor with a rated power of 250 W and a wireless module to communicate with the operator's console. The dynamic model of the robot and the control strategy is derived, and the stability of the controller is proofed. Findings The payload experiment shows the robot can afford up to 3.7 times payload versus its own weight. Even when the payload is 30 kg, the robot can maintain a speed of the 1 m/s. The experiments also show that the tracking error of the robot reaches zero. Originality/value A rope climbing robot for high mast lighting inspection is proposed. The developed mechanism can reach a speed of 1 m/s with the payload of 30 kg, while its own weight is only 15.6 kg. The payload/weight ratio of the robot is 2.24; this value is rather good in many climbing robots reported in other renowned journal.
机译:目的本文旨在开发一种攀爬机器人,以帮助人们检查高桅杆照明灯。设计/方法/方法机器人由驱动机构,悬挂机构和压缩机构组成。驱动机构由链条和链轮实现,链条和链轮彼此相对布置,以形成双履带机构。压缩机制挤压毛毛虫,橡胶脚“抓住”钢丝绳以产生足够的附着力。悬挂机构用于补偿链条的收缩或延伸。机器人配备了额定功率为250 W的直流电动机和用于与操作员控制台进行通信的无线模块。推导了机器人的动力学模型和控制策略,证明了控制器的稳定性。结果负载实验表明,机器人可以承受的重量是其自身重量的3.7倍。即使有效负载为30 kg,机器人也可以保持1 m / s的速度。实验还表明,机器人的跟踪误差达到零。独创性/价值提出了一种用于高桅杆照明检查的爬绳机器人。所开发的机械装置的有效载荷为30 kg,可以达到1 m / s的速度,而其自身重量仅为15.6 kg。机器人的有效负载/重量比为2.24;在其他知名杂志报道的许多攀爬机器人中,该值相当不错。

著录项

  • 来源
    《Assembly Automation》 |2019年第1期|77-85|共9页
  • 作者单位

    Harbin Inst Technol Shenzhen, Sch Mech Engn & Automat, Shenzhen, Peoples R China;

    Beijing Inst Technol, Adv Innovat Ctr Intelligent Robots & Syst, Beijing, Peoples R China;

    Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China;

    Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China;

    Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China;

    Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Climbing robot; Inspection robot; Robot control;

    机译:攀爬机器人;检查机器人;机器人控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号