首页> 外文期刊>Assembly Automation >Research on assembly sequence planning based on genetic simulated annealing algorithm and ant colony optimization algorithm
【24h】

Research on assembly sequence planning based on genetic simulated annealing algorithm and ant colony optimization algorithm

机译:基于遗传模拟退火算法和蚁群优化算法的装配序列计划研究

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to propose a novel method under the name of genetic simulated annealing algorithm (GSAA) and ant colonyrnoptimization (AC0) algorithm for assembly sequence planning (ASP) which is possessed of the competence for assisting the planner in generating a satisfiedrnand effective assembly sequence with respect to large constraint assembly perplexity.rnDesign/methodology/approach - Based on the genetic algorithm (GA), simulated annealing, and ACO algorithm, the GSAA are put forward. A casernstudy is presented to validate the proposed method.rnFindings - This GSAA has better optimization performance and robustness. The degree of dependence on the initial assembly sequence about GSAA isrndecreased. The optimization assembly sequence still can be obtained even if the assembly sequences of initial population are infeasible. By combiningrnGA and simulated annealing (SA), the efficiency of searching and the quality of solution of GSAA is improved. As for the presented ACO algorithm, thernsearching speed is further increased.rnOriginalitylvalue - Traditionally, GA heavily depends on the choosing original sequence, which can result in early convergence in iterative operation,rnlower searching efficiency in evolutionary process, and non-optimization of final result for global variable. Similarly, SA algorithms may generate a greatrndeal of infeasible solutions in the evolution process by generating new sequences through exchanging position of the randomly selected two parts, whichrnresults in inefficiency of the solution-searching process. In this paper, the proposed GSAA and ACO algorithm for ASP are possessed of the competence forrnassisting the planner in generating a satisfied and effective assembly sequence with respect to large constraint assembly perplexity.
机译:目的-本文的目的是以遗传模拟退火算法(GSAA)和蚁群优化(AC0)算法的名义提出一种用于装配序列计划(ASP)的新方法,该方法具有协助计划者生成数据的能力设计/方法/方法-基于遗传算法,模拟退火算法和ACO算法,提出了GSAA。提出了一个案例研究来验证所提出的方法。rn发现-该GSAA具有更好的优化性能和鲁棒性。对GSAA的初始装配顺序的依赖性降低。即使初始填充的装配顺序不可行,仍可以获取优化装配顺序。结合遗传算法和模拟退火算法,提高了GSAA的搜索效率和求解质量。对于提出的ACO算法,进一步提高了搜索速度。rnl原始值-传统上,遗传算法在很大程度上取决于对原始序列的选择,这可能导致迭代运算的早期收敛,进化过程中的搜索效率降低以及最终结果的非优化用于全局变量。同样,SA算法可能会通过交换随机选择的两个部分的位置来生成新序列,从而在进化过程中产生大量不可行的解决方案,从而导致解决方案搜索过程的效率低下。在本文中,所提出的用于ASP的GSAA和ACO算法具有协助计划者针对大约束装配的复杂性生成满意且有效的装配序列的能力。

著录项

  • 来源
    《Assembly Automation》 |2009年第3期|249-256|共8页
  • 作者单位

    College of Mechanical Engineering, Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Donghua University, Shanghai, China Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA;

    College of Mechanical Engineering, Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Donghua University, Shanghai, China;

    College of Mechanical Engineering, Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Donghua University, Shanghai, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    design for assembly; programming and algorithm theory; job sequence loading;

    机译:组装设计;编程和算法理论;作业序列加载;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号