首页> 外文期刊>Assembly Automation >Bio-inspired approach to invariant recognition and classification of fabric weave patterns and yarn color
【24h】

Bio-inspired approach to invariant recognition and classification of fabric weave patterns and yarn color

机译:生物启发的方法,用于织物的织造图案和纱线颜色的不变识别和分类

获取原文
获取原文并翻译 | 示例

摘要

Purpose - This paper aims to propose a biologically inspired processing architecture to recognize and classify fabrics with respect to the weave pattern (fabric texture) and yarn color (fabric color). Design/methodology/approach - By using the fabric weave patterns image identification system, this study analyzed the fabric image based on the Hierarchical-MAX (HMAX) model of computer vision, to extract feature values related to texture of fabric. Red Green Blue (RGB) color descriptor based on opponent color channels simulating the single opponent and double opponent neuronal function of the brain is incorporated in to the texture descriptor to extract yarn color feature values. Finally, support vector machine classifier is used to train and test the algorithm. Findings - This two-stage processing architecture can be used to construct a system based on computer vision to recognize fabric texture and to increase the system reliability and accuracy. Using this method, the stability and fault tolerance (invariance) was improved. Originality/value - Traditionally, fabric texture recognition is performed manually by visual inspection. Recent studies have proposed automatic fabric texture identification based on computer vision. In the identification process, the fabric weave patterns are recognized by the warp and weft floats. However, due to the optical environments and the appearance differences of fabric and yarn, the stability and fault tolerance (invariance) of the computer vision method are yet to be improved. By using our method, the stability and fault tolerance (invariance) was improved.
机译:目的-本文旨在提出一种受生物启发的处理架构,以根据织物的织造图案(织物质地)和纱线颜色(织物颜色)对织物进行识别和分类。设计/方法/方法-通过使用织物编织图案图像识别系统,本研究基于计算机视觉的Hierarchical-MAX(HMAX)模型分析了织物图像,以提取与织物纹理有关的特征值。基于对手颜色通道的红色,绿色,蓝色(RGB)颜色描述符模拟了大脑的单个对手和双重对手神经元功能,并结合到纹理描述符中以提取纱线颜色特征值。最后,使用支持向量机分类器对算法进行训练和测试。调查结果-此两阶段处理体系结构可用于构建基于计算机视觉的系统,以识别织物纹理并提高系统的可靠性和准确性。使用这种方法,提高了稳定性和容错性(不变性)。创意/价值-传统上,织物纹理识别是通过视觉检查手动执行的。最近的研究提出了基于计算机视觉的自动织物质地识别。在识别过程中,经纱和纬纱会识别出织物的织造图案。然而,由于光学环境以及织物和纱线的外观差异,计算机视觉方法的稳定性和容错性(不变性)仍有待提高。通过使用我们的方法,提高了稳定性和容错性(不变性)。

著录项

  • 来源
    《Assembly Automation》 |2016年第2期|152-158|共7页
  • 作者单位

    Engineering Research Center of Digitized Textile and Apparel Technology, College of Information Science and Technology, Donghua University, Shanghai, China;

    Department of Automation, College of Information Science and Technology, Donghua University, Shanghai, China;

    College of Information Science and Technology, Donghua University, Shanghai, China;

    College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer vision; Fabric weave pattern; HMAX; Opponent color channel; RGB color descriptor; Support vector machine (SVM);

    机译:计算机视觉;织物编织图案;HMAX;对手颜色通道;RGB颜色描述符;支持向量机(SVM);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号