首页> 外文期刊>ASHRAE Transactions >Design Optimization for Dairy Barns Using Computational Fluid Dynamics
【24h】

Design Optimization for Dairy Barns Using Computational Fluid Dynamics

机译:使用计算流体动力学设计优化乳制品谷仓

获取原文
获取原文并翻译 | 示例
       

摘要

Computational Fluid Dynamics (CFD) models are computer algorithms which approximate fluid dynamics equations to predict the behavior of a fluid within a specified boundary. These models have become a popular tool to aid in the refinement and optimization of design, and to give a visual representation of fluid behavior. The main equations that describe fluid dynamics, the Navier-Stokes Equations, were formulated in the 19th century. To this date, the Navier-Stokes equations have only been solved for very particular and simplified cases. However, with the evolution of computers, approximations to these equations can be obtained by means of using numerical methods. In basic fluid mechanics, the Bernoulli Equation is modified to include a headloss factor which accounts for pressure losses due to turbulence effects. Darcy-Weibasch or Hazen Williams equations can be used to determine headloss factors and use it to predict pressure loss between two points. This approach is often sufficient for most practical ventilation engineering problems when the actual turbulence effects and mechanism do not have to be fully modeled. For many other engineering problems, this approach is insufficient, and a more detailed modelling and understanding of turbulence is required. Detailed turbulence models started being developed in the 20th century. One of these models is the "k-epsilon " turbulence model. The model is based on the Reynolds Averaged Navier-Stokes (RANS) equations which are a statistically averaged modification of the original Navier-Stokes. Barns for dairy cows require proper air movement to maintain animal comfort to produce a better-quality product. In literature, the design air velocity range is typically accepted as 5-7 mph at cow level. A challenge that any mechanical designer faces when engineering the ventilation system is to confirm thorough air distribution within the space, and as such, CFD modelling is a useful tool in solving this challenge. Traditionally, fans are used to supply air, but it is ofien impractical in dairy bams. Moreover, the designer must consider reduced ventilation flows in the Winter and high flows in the Summer due to cost prohibitive refrigeration equipment. This paper covers the actual modeling to design a real ventilation system for a 3,900 m~2 (42,000 ft~2) dairy farm in cold Canadian weather. CFD is analyzed to compare the following design alternatives including increasing size of the ventilation supply and exhaust fans, using exhaust or supply fans only vs both supply and exhaust fans; and provision of baffles only, transfer fans only or a combination of both.
机译:计算流体动力学(CFD)模型是近似流体动力学方程的计算机算法,以预测指定边界内的流体的行为。这些型号已成为一种流行的工具,可以帮助改进和优化设计,并提供流体行为的视觉表示。描述了流体动力学,Navier-Stokes方程的主要方程在19世纪制定。迄今为止,对于非常特别简化的情况,Navier-Stokes方程仅解决了。然而,随着计算机的演变,可以通过使用数值方法获得对这些等式的近似。在基本流体力学中,伯努利方程被修改为包括由于湍流效应引起的压力损失的头塔因子。达西 - 威斯彻或斑角威廉姆斯方程式可用于确定头划线因素并使用它来预测两点之间的压力损失。当实际湍流效应和机制不必完全建模时,这种方法通常足以用于大多数实际通风工程问题。对于许多其他工程问题,这种方法不足,需要更详细的建模和对湍流的理解。详细的湍流模型开始于20世纪开发。其中一个模型是“K-epsilon”湍流模型。该模型基于Reynolds平均Navier-Stokes(RAN)方程,其是原始Navier-Stokes的统计平均修改。奶牛的谷仓需要适当的空气运动来维持动物的舒适性,以产生更好的产品。在文献中,设计空气速度范围通常在牛水平上被接受为5-7英里/小时。任何机械设计师在工程设备时面临的挑战是在空间内确认彻底的空气分布,因此,CFD建模是解决这一挑战的有用工具。传统上,粉丝用于提供空气,但它在乳制品BAMS中是不切实际的。此外,设计师必须考虑冬季冬季的通风流动,由于成本令人生断的制冷设备,夏季高流量。本文涵盖了在冷加拿大天气中为3,900米〜2(42,000英尺2)乳制品的实际通风系统设计实际建模。分析CFD以比较以下设计替代方案,包括越来越大的通风供应和排气风扇,使用排气或供应风扇仅VS供应和排气扇;并仅提供挡板,仅转移粉丝或两者的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号