首页> 外文期刊>Artificial life and robotics >Image recognition using adaptive fuzzy neural network based on lifting scheme of wavelet
【24h】

Image recognition using adaptive fuzzy neural network based on lifting scheme of wavelet

机译:基于小波提升方案的自适应模糊神经网络图像识别

获取原文
获取原文并翻译 | 示例

摘要

This article proposes an adaptive fuzzy neural network (AFNN) based on lifting scheme of wavelets to recognize image with noise/blur. In the research, first, the image with noise/blur is completed through the gray level transformation to discrete space; then the discrete sequence is classified using lifting wavelet transformation. The image processing is performed by the AFNN in which a time-varying adaptive learning algorithm is adopted. The root-mean-square error is used to evaluate the efficiency of image recognition. Meanwhile, comparisons of the lifting adaptive fuzzy neural network with fuzzy neural network are made to verify the performance of the proposed adaptive fuzzy neural network.
机译:本文提出了一种基于小波提升的自适应模糊神经网络(AFNN),以识别具有噪声/模糊的图像。在研究中,首先,通过将灰度转换为离散空间来完成具有噪声/模糊的图像。然后利用提升小波变换对离散序列进行分类。图像处理由AFNN执行,其中采用时变自适应学习算法。均方根误差用于评估图像识别的效率。同时,将提升自适应模糊神经网络与模糊神经网络进行了比较,以验证所提出的自适应模糊神经网络的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号