首页> 外文期刊>Artificial life and robotics >Monitoring system to detect fallon-fall event utilizing frequency feature from a microwave Doppler sensor: validation of relationship between the number of template datasets and classification performance
【24h】

Monitoring system to detect fallon-fall event utilizing frequency feature from a microwave Doppler sensor: validation of relationship between the number of template datasets and classification performance

机译:监测系统利用微波多普勒传感器的频率特征检测跌倒/非跌倒事件:验证模板数据集数量与分类性能之间的关系

获取原文
获取原文并翻译 | 示例

摘要

AbstractA fall event is a serious issue for the elderly because it may cause critical aftereffects. To reduce the risk of these aftereffects, early detection of the fall event is essential. However, it is difficult for caregivers to detect fall events early themselves, because they are required to constantly monitor the elderly to confirm their safety. Therefore, an automatic monitoring system which could detect fall events early is helpful in the healthcare field. We have proposed a fall event detection system utilizing a microwave Doppler sensor. The frequency feature is calculated, and compared with known fall or non-fall event data. However, for real-time detection, the number of template datasets must be as low as possible while maintaining high performance of the classification. In this paper, we attempt to identify the relationship between the number of template datasets and the performance of the proposed system.
机译: Abstract 跌倒事件对于老年人来说是一个严重的问题,因为它可能导致严重的后遗症。为了减少发生这些后遗症的风险,必须及早发现跌倒事件。但是,对于照料者来说,他们自己很难及早发现跌倒事件,因为他们需要不断监控老人以确认他们的安全。因此,可以在早期发现跌倒事件的自动监视系统在医疗保健领域很有帮助。我们已经提出了利用微波多普勒传感器的跌倒事件检测系统。计算频率特征,并将其与已知的跌倒或非跌倒事件数据进行比较。但是,对于实时检测,模板数据集的数量必须尽可能少,同时要保持分类的高性能。在本文中,我们试图确定模板数据集的数量与所提出系统的性能之间的关系。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号