首页> 外文期刊>Artificial intelligence >Dynamic problem structure analysis as a basis for constraint-directed scheduling heuristics
【24h】

Dynamic problem structure analysis as a basis for constraint-directed scheduling heuristics

机译:动态问题结构分析作为约束导向的调度启发式算法的基础

获取原文

摘要

While the exploitation of problem structure by heuristic search techniques has a long history in AI (Simon, 1973), many of the advances in constraint-directed scheduling technology in the 1990s have resulted from the creation of powerful propagation techniques. In this paper, we return to the hypothesis that understanding of problem structure plays a critical role in successful heuristic search even in the presence of powerful propagators. In particular, we examine three heuristic commitment techniques and show that the two techniques based on dynamic problem structure analysis achieve superior performance across all experiments. More interestingly, we demonstrate that the heuristic commitment technique that exploits dynamic resource-level non-uniformities achieves superior overall performance when those non-uniformities are present in the problem instances.
机译:尽管启发式搜索技术对问题结构的利用在AI中历史悠久(Simon,1973),但1990年代约束约束调度技术的许多进步是由于强大的传播技术的产生而产生的。在本文中,我们回到一个假设,即即使有强大的传播者,对问题结构的理解在成功的启发式搜索中也起着至关重要的作用。特别是,我们研究了三种启发式承诺技术,并表明这两种基于动态问题结构分析的技术在所有实验中均具有出色的性能。更有趣的是,我们证明了当问题实例中存在那些不均匀性时,利用动态资源级不均匀性的启发式承诺技术可以实现更高的整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号