首页> 外文期刊>Artificial intelligence >Generalised Arc Consistency For The Alldifferent Constraint: An Empirical Survey
【24h】

Generalised Arc Consistency For The Alldifferent Constraint: An Empirical Survey

机译:所有约束的广义弧一致性:一项实证研究

获取原文
获取原文并翻译 | 示例

摘要

The AllDifferent constraint is a crucial component of any constraint toolkit, language or solver, since it is very widely used in a variety of constraint models. The literature contains many different versions of this constraint, which trade strength of inference against computational cost. In this paper, we focus on the highest strength of inference, enforcing a property known as generalised arc consistency (GAC). This work is an analytical survey of optimizations of the main algorithm for GAC for the AllDifferent constraint. We evaluate empirically a number of key techniques from the literature. We also report important implementation details of those techniques, which have often not been described in published papers. We pay particular attention to improving incrementality by exploiting the strongly-connected components discovered during the standard propagation process, since this has not been detailed before. Our empirical work represents by far the most extensive set of experiments on variants of GAC algorithms for AllDifferent. Overall, the best combination of optimizations gives a mean speedup of 168 times over the same implementation without the optimizations.
机译:AllDifferent约束是任何约束工具箱,语言或求解器的关键组成部分,因为它已广泛用于各种约束模型中。文献中包含此约束的许多不同版本,这些版本将推理强度与计算成本进行了权衡。在本文中,我们将重点放在推理的最高强度上,以实现一种称为广义弧一致性(GAC)的属性。这项工作是针对AllDifferent约束对GAC主要算法的优化进行的分析性调查。我们根据文献评估了许多关键技术。我们还报告了这些技术的重要实现细节,而这些细节通常在已发表的论文中并未描述。我们特别关注通过利用在标准传播过程中发现的紧密连接的组件来提高增量性,因为以前没有对此进行详细介绍。我们的经验工作代表了针对AllDifferent的GAC算法变体的最广泛的实验集。总体而言,最佳优化组合可比没有优化的同一实现方式平均提高168倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号