首页> 外文期刊>Artificial intelligence >On the power of clause-learning SAT solvers as resolution engines
【24h】

On the power of clause-learning SAT solvers as resolution engines

机译:子句学习SAT求解器作为解析引擎的功能

获取原文
获取原文并翻译 | 示例

摘要

In this work, we improve on existing results on the relationship between proof systems obtained from conflict-driven clause-learning SAT solvers and general resolution. Previous contributions such as those by Beame et al. (2004), Hertel et al. (2008), and Buss et al. (2008) demonstrated that variations on conflict-driven clause-learning SAT solvers corresponded to proof systems as powerful as general resolution. However, the models used in these studies required either an extra degree of non-determinism or a preprocessing step that is not utilized by state-of-the-art SAT solvers in practice. In this paper, we prove that conflict-driven clause-learning SAT solvers yield proof systems that indeed p-simulate general resolution without the need for any additional techniques. Moreover, we show that our result can be generalized to certain other practical variations of the solvers, which are based on different learning schemes and restart policies.
机译:在这项工作中,我们改进了从冲突驱动子句学习SAT求解器获得的证明系统与一般解决方案之间的关系的现有结果。以前的贡献,例如Beame等人的著作。 (2004),Hertel等。 (2008),和Buss等。 (2008年)证明了冲突驱动子句学习SAT求解器的变体对应于与一般解决方案一样强大的证明系统。但是,这些研究中使用的模型需要额外的不确定性或预处理步骤,而最新的SAT解算器在实践中并未使用这些步骤。在本文中,我们证明了冲突驱动的子句学习SAT求解器可生成证明系统,该系统确实p模拟了通用解决方案,而无需任何其他技术。此外,我们表明,我们的结果可以推广到求解器的某些其他实际变化,这些变化基于不同的学习方案和重新启动策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号