首页> 外文期刊>Archives of Computational Methods in Engineering >A Survey of Behavioral Biometric Gait Recognition: Current Success and Future Perspectives
【24h】

A Survey of Behavioral Biometric Gait Recognition: Current Success and Future Perspectives

机译:行为生物识别步态识别调查:当前的成功与未来观点

获取原文
获取原文并翻译 | 示例

摘要

In today digital society, vulnerability to person authentication is a serious issue in real time scenarios like (airport, hospital, metro stations, etc.). This issue has increased the growth of video surveillance security systems. In recent decades behavioral biometric trait gait has emerged as a potential surveillance monitoring system because of its inconspicuous and unperceivable nature. Even more human gait has a benefit that it can be tracked at a distance and under low resolution videos. Finally, it is difficult to impersonate gait features. In this article, we comprehensively investigate the past and current research development in vision-based (VB) gait recognition. We give a brief description of feature selection and classification techniques used in gait recognition. The article extensively investigates feature representation techniques, classified into model-based and model-free. The article also provides a detail description of databases that are available for research purposes classified into two categories: VB and sensor-based. We extensively examine factors that affect gait recognition, and current research was done to cope with these factors. Moreover, this article proposes future perspectives after investigating state-of-art literature that can be more helpful to experts and new comers in gait recognition. In last, we also give a brief description of the proposed workflow.
机译:在今天的数字社会中,对人身份验证的漏洞是一个严重的问题,如(机场,医院,地铁站等)。这个问题增加了视频监控安全系统的增长。近几十年来,行为生物识别性地步态由于其不起眼的性质而不是潜在的监测监测系统。甚至更多人体步态有一个有益的好处,可以在距离和低分辨率视频下跟踪它。最后,很难冒充步态特征。在本文中,我们全面调查了愿景(VB)步态认可的过去和目前研究发展。我们简要介绍了步态识别中使用的特征选择和分类技术。文章广泛调查特征表示技术,分类为基于模型和无模型。本文还提供了用于分类为两类的研究目的的数据库的详细描述:VB和基于传感器。我们广泛地检查影响步态认可的因素,并进行了当前的研究来应对这些因素。此外,本文在调查最先进的文献后提出了未来的观点,这些文献可能对专家和新的COMERS在步态认可方面更有用。最后,我们还简要介绍了所提出的工作流程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号