首页> 外文期刊>Archives of Computational Methods in Engineering >A Review on Machine Learning and Deep Learning Perspectives of IDS for loT: Recent Updates, Security Issues, and Challenges
【24h】

A Review on Machine Learning and Deep Learning Perspectives of IDS for loT: Recent Updates, Security Issues, and Challenges

机译:IDS机器学习和深度学习视角的综述:最近的更新,安全问题和挑战

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things (IoT) is widely accepted technology in both industrial as well as academic field. The objective of IoT is to combine the physical environment with the cyber world and create one big intelligent network. This technology has been applied to various application domains such as developing smart home, smart cities, healthcare applications, wireless sensor networks, cloud environment, enterprise network, web applications, and smart grid technologies. These wide emerging applications in variety of domains raise many security issues such as protecting devices and network, attacks in IoT networks, and managing resource-constrained IoT networks. To address the scalability and resource-constrained security issues, many security solutions have been proposed for IoT such as web application firewalls and intrusion detection systems. In this paper, a comprehensive survey on Intrusion Detection System (IDS) for IoT is presented for years 2015-2019. We have discussed various IDS placement strategies and IDS analysis strategies in IoT architecture. The paper discusses various intrusions in IoT, along with Machine Learning (ML) and Deep Learning (DL) techniques for detecting attacks in IoT networks. The paper also discusses security issues and challenges in IoT.
机译:物联网(物联网)在工业和学术领域都广泛接受了技术。 IOT的目标是将物理环境与网络世界结合起来,并创建一个大型智能网络。该技术已应用于各种应用领域,例如开发智能家居,智能城市,医疗保健应用,无线传感器网络,云环境,企业网络,Web应用程序和智能电网技术。各种域中的这些广泛的新兴应用程序引发了许多安全问题,例如保护设备和网络,IOT网络中的攻击以及管理资源受限的物联网网络。为了解决可伸缩性和资源约束的安全问题,已提出许多安全解决方案,例如Web应用程序防火墙和入侵检测系统等IOT。本文在2015 - 2019年介绍了IOT入侵检测系统(IDS)的全面调查。我们讨论了IOT架构中的各种IDS放置策略和IDS分析策略。本文讨论了物联网的各种入侵,以及用于检测物联网网络中的攻击的机器学习(ML)和深度学习(DL)技术。本文还讨论了IOT中的安全问题和挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号