首页> 外文期刊>Applied Surface Science >ZnSe nanoparticles combined with uniform 3D interconnected MWCNTs conductive network as high-rate and freeze-resistant anode materials for sodium-ion batteries
【24h】

ZnSe nanoparticles combined with uniform 3D interconnected MWCNTs conductive network as high-rate and freeze-resistant anode materials for sodium-ion batteries

机译:ZnSe纳米粒子与均匀的3D互连的MWCNTS导电网络联系,作为钠离子电池的高速耐热阳极材料

获取原文
获取原文并翻译 | 示例

摘要

ZnSe as anode material for sodium ion batteries (SIBs) has received great attention due to its high theoretical specific capacity, environmental friendliness and low price. However, its electrochemical performance is hindered by large volume variation and poor electrical conductivity. In this work, we reported a one-step hydro thermal strategy of ZnSe/MWCNTs (Multi-walled Carbon Nanotubes) to form ZnSe nanoparticles combined with uniform 3D interconnected MWCNTs conductive network to synergistically boost sodium-ion storage process. Especially, the uniform 3D interconnected MWCNTs conductive network plays a vital role of enhanced elect racial conductivity, ionic diffusivity and structural stability so that it can achieve excellent electrochemical performance at both room and low temperature. Also, pseudocapacitance in redox processes is dominated leading to superior rate performance. When the optimal ZnSe/MWCNTs (denoted by ZnSe-40) are applied at room temperature, it delivers 398.8 mA h g(-1) at 0.1 A g(-1) after 50 cycles and superior rate performance (279.4 mA h g(-1) at 10 A g(-1)). Its capacity retention can still be 93% at 4 A g(-1) after 300 cycles. What is pleasantly surprised, even at low temperature (-10 degrees C), ZnSe-40 shows good long-term cycling stability of 246.7 mA h g(-1) at 1 A g(-1) after 600 cycles and 180.5 mA h g(-1) at 5 A g(-1). The reaction mechanism in sodiation/desodiation process is explored by discussing the change of intermediate products through ex-situ characterization methods.
机译:由于其高理论特异性容量,环境友好和低价格,ZnSE作为钠离子电池(SIBS)的阳极材料非常关注。然而,其电化学性能受到大体积变化和差的导电性差的阻碍。在这项工作中,我们报道了ZnSe / MWCNT(多壁碳纳米管)的一步水热策略,形成ZnSe纳米颗粒,与均匀的3D互连的MWCNTS导电网络联合到协同升压钠离子储存过程。特别是,统一的3D互连的MWCNTS导电网络在增强的选举种族电导率,离子扩散性和结构稳定性中起着至关重要的作用,使得它可以在两个房间和低温下实现优异的电化学性能。此外,氧化还原过程中的假偶数是主导的,导致卓越的速率性能。当在室温下施加最佳ZnSe / mwcnts(由ZnSe-40表示)时,在50次循环和优异的速率性能下,在0.1Ag(-1)下提供398.8 mA Hg(-1)(279.4 mA hg(-1 )在10 a g(-1))。在300次循环后,其容量保持仍然可以在4 A g(-1)下为93%。令人愉快的惊喜,即使在低温下(-10℃),ZnSe-40也显示出600次循环和180.5 mA Hg( -1)5 a g(-1)。通过讨论通过前原位表征方法讨论中间产物的变化来探讨调解/退化过程中的反应机制。

著录项

  • 来源
    《Applied Surface Science》 |2021年第1期|148194.1-148194.8|共8页
  • 作者单位

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin 300072 Peoples R China|Tiangong Univ Sch Chem & Chem Engn State Key Lab Hollow Fiber Membrane Mat & Membran Tianjin 300387 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin 300072 Peoples R China|Tiangong Univ Sch Chem & Chem Engn State Key Lab Hollow Fiber Membrane Mat & Membran Tianjin 300387 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin 300072 Peoples R China;

    Tiangong Univ Sch Chem & Chem Engn State Key Lab Hollow Fiber Membrane Mat & Membran Tianjin 300387 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sodium ion batteries; ZnSe; MWCNTs; Conductive network; High-rate; Low temperature;

    机译:钠离子电池;ZnSe;MWCNT;导电网络;高速;低温;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号