首页> 外文期刊>Applied Surface Science >Construction of TiP_2O_7 nanosheets/rGO hierarchical Flower-like heterostructures for superfast and ultralong lithiation/delithiation process
【24h】

Construction of TiP_2O_7 nanosheets/rGO hierarchical Flower-like heterostructures for superfast and ultralong lithiation/delithiation process

机译:尖端施工尖端纳米片/ rgo等级花朵异质结构,用于超快速和超岩锂化/脱锂过程

获取原文
获取原文并翻译 | 示例

摘要

Despite significant progress in lithium-ion batteries (LIBs), the commercialization and performance improvement of anode materials are impended by their inferior stability and sluggish kinetics. Herein, a modified strategy, involving the one-step solvothermal reaction and subsequent sintering process, is proposed to synthesize the TiP2O7/reduced graphene oxide (rGO) microsphere, which serves as a Li-ion storage material. Profiting from the stable chemical characteristics of pyrophosphate and unique structure framework, the TiP2O7/rGO composite exhibits extraordinary electrochemical performance, especially in long-term cycling (over 4000 loops at a ultrahigh rate of 2000 mA g(-1)). In this hierarchical architecture, the three-dimensional TiP2O7 microflowers are intimately wrapped by the interlinked rGO nanosheets, constructing a well-designed conducive network with favorable electrochemical kinetics. Moreover, the dynamic changes of impedance and phase evolutions are further verified by in-situ electrochemical impedance spectroscopy (EIS) measurement. Based on the detailed analysis of kinetic features, enhanced pseudocapacitance effect could boost the rate of Li-ion transferring, leading to the superior rate capability (460.7, 372.1, 327.0, 280.9, 235.6, 176.8, 127.5 mAh g(-1) at 40, 80, 200, 400, 800, 2000, 4000 mA g(-1)). This work provides an effective strategy to realize high performance of pyrophosphate-based materials for Li-ion storage.
机译:尽管在锂离子电池(LIBS)中取得了显着进展,但阳极材料的商业化和性能改善妨碍了其劣质稳定性和缓慢的动力学。这里,提出了一种涉及单步溶剂热反应和随后的烧结过程的修饰的策略,以合成铸造末端/氧化石墨烯(RGO)微球,其用作锂离子储存材料。从焦磷酸盐和独特结构框架的稳定化学特征中获利,Tip2O7 / RGO复合材料表现出非凡的电化学性能,特别是在长期循环中(以2000 mA g(-1)的超高率超过4000个环)。在该层级架构中,三维Tip2O7微射线由互连的RGo Nanoshss密切地包装,用良好的电化学动力学构建设计良好设计的利用网络。此外,通过原位电化学阻抗光谱(EIS)测量进一步验证阻抗和相进化的动态变化。基于对动力学特征的详细分析,增强的假偶联效应可以提高锂离子转移的速率,导致优越的速率能力(460.7,372.1,327.0,280.9,235.6,176.8,127.5mahg(-1) ,80,200,400,800,2000,4000 mA g(-1))。该工作提供了实现了实现基于卤代磷酸盐的高性能的有效策略。

著录项

  • 来源
    《Applied Surface Science》 |2020年第may30期|145854.1-145854.8|共8页
  • 作者单位

    Cent South Univ Sch Met & Environm Natl Engn Lab High Efficiency Recovery Refractory Changsha 410000 Peoples R China;

    Cent South Univ Sch Met & Environm Natl Engn Lab High Efficiency Recovery Refractory Changsha 410000 Peoples R China;

    South China Normal Univ Sch Chem & Environm Guangzhou 510006 Peoples R China;

    Cent South Univ Sch Met & Environm Natl Engn Lab High Efficiency Recovery Refractory Changsha 410000 Peoples R China;

    Cent South Univ Sch Met & Environm Natl Engn Lab High Efficiency Recovery Refractory Changsha 410000 Peoples R China;

    Cent South Univ Xiangya Hosp 2 Dept Radiol Changsha 410000 Peoples R China;

    Cent South Univ Sch Met & Environm Natl Engn Lab High Efficiency Recovery Refractory Changsha 410000 Peoples R China;

    Cent South Univ Sch Met & Environm Natl Engn Lab High Efficiency Recovery Refractory Changsha 410000 Peoples R China;

    Cent South Univ Sch Met & Environm Natl Engn Lab High Efficiency Recovery Refractory Changsha 410000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lithium-ion batteries; Anode materials; Titanium pyrophosphate; Cycling stability; Pseudocapacitance;

    机译:锂离子电池;阳极材料;卤代磷酸盐;循环稳定性;假偶像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号