首页> 外文期刊>Applied Surface Science >Reverse water-gas shift chemistry inside a supersonic molecular beam nozzle
【24h】

Reverse water-gas shift chemistry inside a supersonic molecular beam nozzle

机译:超音速分子束喷嘴内的反向水煤气变换化学

获取原文
获取原文并翻译 | 示例

摘要

Resistive heating of the metal surface of a supersonic molecular beam nozzle is shown to be very effective in converting CO2 diluted in H-2 to CO and H2O via the reverse water-gas shift (RWGS) reaction at temperatures that preclude simple pyrolysis. The conversion of CO2 to CO, referred to herein as "RWGS yield," exceeds 80% at nozzle temperature above 1000 K, with a detectable methane byproduct. The stainless-steel surface of the nozzle appears to facilitate the reaction as a heterogeneous catalyst. Reaction yield is observed to increase with nozzle temperature and, when the gas mixture contains a significant excess of H-2, decrease with increasing in nozzle stagnation pressure. The inverse dependence of the reaction on stagnation pressure is used to propose a reaction mechanism. Additional kinetic control over the mechanism is afforded by adjusting reactant partial pressures and residence times inside the nozzle reactor, highlighting this method's utility in screening heterogeneous catalysis reactions with fine control over mass flow rates, pressure, and temperature. The results of this study, therefore, present a route to efficient, high pressure, inline catalysis as well as a method to rapidly assess the viability of new catalysts in development.
机译:在防止简单热解的温度下,通过反向水煤气变换(RWGS)反应,对超音速分子束喷嘴的金属表面进行电阻加热非常有效地将H-2中稀释的CO2转化为CO和H2O。在高于1000 K的喷嘴温度下,CO2转化为CO的转化率超过80%,其中有可检测的甲烷副产物。喷嘴的不锈钢表面似乎有助于多相催化剂的反应。观察到反应产率随喷嘴温度而增加,并且当气体混合物中H-2的含量明显过量时,反应产率随喷嘴停滞压力的增加而降低。反应与停滞压力的反相关被用来提出反应机理。通过调节喷嘴喷嘴反应器内的反应物分压和停留时间,可以对该机理进行额外的动力学控制,从而突出显示了该方法在筛选多相催化反应中的实用性,可以很好地控制质量流量,压力和温度。因此,这项研究的结果为高效,高压在线催化提供了一种途径,并提供了一种方法来快速评估正在开发的新型催化剂的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号