首页> 外文期刊>Applied Surface Science >Ultra-fine size-controlled Pt (111) nanoparticles supported on mesoporous titania as an efficient photoelectrocatalyst for hydrogen evolution
【24h】

Ultra-fine size-controlled Pt (111) nanoparticles supported on mesoporous titania as an efficient photoelectrocatalyst for hydrogen evolution

机译:介孔二氧化钛上担载的超细尺寸可控的Pt(111)纳米颗粒,作为一种有效的析氢光电催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

Synthetic methods that allow tuning of well-defined N nanoparticles on metal-oxide support are much desirable in catalysis research. In this work, we report a synthetic strategy for tuning N nanoparticles (NPs) on titania support, which is widely used in the catalytic field. The Pt NPs size was varied from 1 to 5 nm with the variation of template concentration. The catalyst showed high metal dispersion (68-32%) as compared to 2% metal dispersion for the catalyst synthesized with the conventional method. The catalytic activity of the catalyst was demonstrated using photoelectrochemical hydrogen production in CO2 atmosphere in alkaline medium at potential ca. -0.9 V vs. Ag/AgCl. The photoelectrode gave photocurrents of -28.76 mA-cm(-2) and -7.87 mA-cm(-2) under UV and visible light irradiations, respectively. The catalyst showed the highest activity (- 7.87 mA-cm(-2)) for hydrogen production amongst metal oxide based photoelectrodes under visible light. The variation of N metal loading on the mesoporous titania was studied. First principles based DFT calculations favored the bicarbonate dissociation route into formic acid with the conversion of bicarbonate into formate as the rate determining step. The adsorption energy of bicarbonate over the catalyst was calculated as -2.17 eV, whereas carbon dioxide showed adsorption energy of -1.34 eV.
机译:允许在金属氧化物载体上调节明确定义的N纳米颗粒的合成方法在催化研究中非常需要。在这项工作中,我们报告了一种在二氧化钛载体上调节N纳米粒子(NP)的合成策略,该策略已广泛用于催化领域。随着模板浓度的变化,Pt NPs的大小在1到5 nm之间变化。与用常规方法合成的催化剂的2%金属分散体相比,该催化剂显示出高的金属分散体(68-32%)。在碱性介质中,在CO2气氛中以光电化学方式制氢,在电势为ca的条件下证明了催化剂的催化活性。 -0.9 V对Ag / AgCl。在紫外和可见光照射下,光电极分别产生-28.76 mA-cm(-2)和-7.87 mA-cm(-2)的光电流。在可见光下,该催化剂在基于金属氧化物的光电极中显示出最高的产氢活性(-7.87 mA-cm(-2))。研究了介孔二氧化钛上氮金属含量的变化。基于DFT的第一原理计算方法将碳酸氢盐的分解途径转化为甲酸,并将碳酸氢盐转化为甲酸作为速率确定步骤。碳酸氢盐在催化剂上的吸附能经计算为-2.17 eV,而二氧化碳显示为-1.34 eV。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号