首页> 外文期刊>Applied Surface Science >Microstructures and mechanical properties of CoCrFeNiAl_(0.3) high-entropy alloy thin films by pulsed laser deposition
【24h】

Microstructures and mechanical properties of CoCrFeNiAl_(0.3) high-entropy alloy thin films by pulsed laser deposition

机译:脉冲激光沉积CoCrFeNiAl_(0.3)高熵合金薄膜的组织和力学性能

获取原文
获取原文并翻译 | 示例

摘要

Recently much attention has been paid to high-entropy alloy thin films (HEATFs) due to their excellent physical and chemical properties. Simultaneously, pulsed laser deposition (PLD) is an increasingly focused method for thin film preparation due to its remarkable advantages. In this study, CoCrFeNiAl0.3 HEATFs were prepared on silicon substrates in a high vacuum chamber at room temperature for different deposition time by PLD. The microscopic morphologies, chemical composition, elastic modulus, nanohardness and corrosion behaviors of the CoCrFeNiAl0.3 HEATFs were systematically investigated. The microscopic morphology shows that there are some nanoscale granules on the surface of the HEATFs. The nanoindentation results indicated that the CoCrFeNiAl0.3 HEATFs have higher nanohardness but lower elastic modulus than the bulk counterparts. With increasing the deposition time, elastic modulus and nanohardness become higher initially and then decrease, which reaches at highest as the deposition time for 2 h. Corrosion behaviors experiments verified that CoCrFeNiAl0.3 HEATFs have higher corrosion resistance than 316 L stainless steel in NaCl solution. Our results could provide a new advanced method for preparing HEATFs, and in-depth understanding the mechanics and corrosion behaviors of HEATFs for future application.
机译:最近,由于高熵合金薄膜(HEATFs)优异的物理和化学性能,它们引起了人们的极大关注。同时,由于其显着的优势,脉冲激光沉积(PLD)是一种越来越集中的薄膜制备方法。在这项研究中,CoLDFeNiAl0.3 HEATFs通过PLD在室温下在高真空室中的硅衬底上制备了不同的沉积时间。系统地研究了CoCrFeNiAl0.3 HEATF的微观形貌,化学成分,弹性模量,纳米硬度和腐蚀行为。微观形态表明,HEATFs表面存在一些纳米级颗粒。纳米压痕结果表明,CoCrFeNiAl0.3 HEATFs的纳米硬度高于本体的硬度。随着沉积时间的增加,弹性模量和纳米硬度先升高然后降低,随着沉积时间2 h的增加,弹性模量和纳米硬度最高。腐蚀行为实验证明,在NaCl溶液中,CoCrFeNiAl0.3 HEATFs比316 L不锈钢具有更高的耐腐蚀性。我们的结果可为制备HEATF提供一种新的先进方法,并深入了解HEATF的力学和腐蚀行为,以备将来应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号