首页> 外文期刊>Applied Surface Science >Construction of Ag@AgCl decorated TiO_2 nanorod array film with optimized photoelectrochemical and photocatalytic performance
【24h】

Construction of Ag@AgCl decorated TiO_2 nanorod array film with optimized photoelectrochemical and photocatalytic performance

机译:具有优化的光电化学和光催化性能的Ag @ AgCl装饰的TiO_2纳米棒阵列膜的构建

获取原文
获取原文并翻译 | 示例

摘要

A novel Ag@AgCl/TNR film photocatalyst was successfully obtained by a facile multistep route. Using a well-organized TiO2 nanorod array (TNR) film as the starting material, Ag nanoparticles were uniformly deposited on the TNR film via a photochemical reduction, and in situ oxidation of Ag by FeCl3 solution resulted in the formation of Ag@AgCl/TNR film. The structure, morphology, composition, optical, photocatalytic and photoelectrochemical properties of the obtained films were investigated in detail. The results showed that core-shell Ag@AgCl can effectively promote the transfer of photo-generated electron-hole pairs, suppress their recombination, and enhance the visible light absorption. The Ag@AgCl/TNR film with 60 min oxidation time (S60) showed the highest photocurrent and best transfer performance of interfacial electrons in the electrochemical impedance spectroscopy (EIS) Nyquist plots. For the photodegradation of methyl orange (MO), the S60 exhibited the highest photocatalytic efficiency (90.8%) and good stability under visible light irradiation, which can be comparable and even better than the previous reports. A detailed photocatalytic mechanism was proposed on the basis of the fact that Ag nanoparticles with surface plasma resonance (SPR) can be excited by visible light and this unique structure effectively transfers photo-generated electrons from Ag to TiO2 conduction band, accomplished by the transfer of compensative electrons from a donor (Cl-) to Ag nanoparticles.
机译:通过简便的多步法成功地获得了新型的Ag @ AgCl / TNR薄膜光催化剂。以组织良好的TiO2纳米棒阵列(TNR)膜为起始材料,通过光化学还原将Ag纳米颗粒均匀沉积在TNR膜上,并用FeCl3溶液原位氧化Ag形成Ag @ AgCl / TNR电影。详细研究了所得薄膜的结构,形态,组成,光学,光催化和光电化学性能。结果表明,核壳型Ag @ AgCl可以有效地促进光生电子-空穴对的转移,抑制它们的复合,并增强可见光的吸收。氧化时间为60分钟(S60)的Ag @ AgCl / TNR膜在电化学阻抗谱(EIS)奈奎斯特图中显示出最高的光电流和最佳的界面电子转移性能。对于甲基橙(MO)的光降解,S60在可见光照射下表现出最高的光催化效率(90.8%)和良好的稳定性,这可以与以前的报道相媲美甚至更好。基于可见光激发具有表面等离子体共振(SPR)的Ag纳米粒子这一事实,提出了一种详细的光催化机理,这种独特的结构有效地将光生电子从Ag转移到TiO2导带,这是通过电子的转移实现的。供体(Cl-)到银纳米粒子的补偿电子。

著录项

  • 来源
    《Applied Surface Science》 |2019年第15期|84-93|共10页
  • 作者单位

    Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China|Anhui Univ Sci & Technol, Sch Mat Sci & Engn, Huainan 232001, Peoples R China;

    Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China;

    Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China;

    Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China;

    Anhui Univ Sci & Technol, Sch Mat Sci & Engn, Huainan 232001, Peoples R China;

    Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China;

    Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    TiO2; Ag@AgCl; Nanorod array; Photocurrent; Photocatalytic activity;

    机译:TiO2;Ag @ AgCl;纳米棒阵列;光电流;光催化活性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号