首页> 外文期刊>Applied Surface Science >Introduction of nitrogen defects into a graphitic carbon nitride framework by selenium vapor treatment for enhanced photocatalytic hydrogen production
【24h】

Introduction of nitrogen defects into a graphitic carbon nitride framework by selenium vapor treatment for enhanced photocatalytic hydrogen production

机译:通过硒蒸气处理将氮缺陷引入石墨化碳氮化物骨架中以增强光催化制氢

获取原文
获取原文并翻译 | 示例

摘要

Graphitic carbon nitride (g-C3N4) is a metal-free semiconductor photocatalyst that has attracted significant attention due to its promising application in photocatalytic hydrogen production. However, pristine g-C3N4 suffers from a high recombination rate of photo-generated charge carriers and also has a limited visible-light absorption range, resulting in low photocatalytic activity. Herein, we report on the preparation and testing of a g-C3N4 photocatalyst with tunable nitrogen defects that delivered improved photocatalytic activity. The nitrogen defects were gradually introduced into the g-C3N4 framework by a selenium vapor treatment of pure g-C3N4, which resulted in improved, stable catalytic activity for photocatalytic hydrogen production. Based on the experimental results and DFT calculations, we proposed that the enhanced photoactivity is attributed to the defect state (DS) formed by the nitrogen vacancy (VN) in the unit cell of g-C3N4 and a small widening of visible light absorption. This nitrogen-based photocatalyst with nitrogen deficiencies was found to deliver an average hydrogen generation rate of 1.16 mmol g(-1) h(-1) at room temperature (25 degrees C), which was 3.4 times greater than pristine g-C3N4. This process of introducing nitrogen defects into the graphitic carbon provides a promising way for enhancing the photocatalytic activity of g-C3N4-based materials for hydrogen production.
机译:石墨碳氮化物(g-C3N4)是一种无金属的半导体光催化剂,由于其在光催化制氢中的应用前景广阔而备受关注。然而,原始的g-C3N4遭受光生电荷载流子的高重组率并且还具有有限的可见光吸收范围,导致低的光催化活性。在本文中,我们报道了具有可调氮缺陷的g-C3N4光催化剂的制备和测试,该光催化剂具有改善的光催化活性。通过纯g-C3N4的硒蒸气处理,将氮缺陷逐渐引入g-C3N4骨架中,从而提高了光催化制氢的稳定性。基于实验结果和DFT计算,我们提出增强的光活性归因于g-C3N4晶胞中的氮空位(VN)形成的缺陷状态(DS)和可见光吸收的小幅扩展。发现这种具有氮缺陷的氮基光催化剂在室温(25摄氏度)下的平均氢产生速率为1.16 mmol g(-1)h(-1),是原始g-C3N4的3.4倍。将氮缺陷引入石墨碳的这一过程为增强基于g-C3N4的氢生产材料的光催化活性提供了一种有前途的方法。

著录项

  • 来源
    《Applied Surface Science》 |2019年第15期|552-559|共8页
  • 作者单位

    Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China;

    Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China;

    Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China;

    Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China;

    Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nitrogen vacancies; g-C3N4; Bandgap; Photocatalytic hydrogen production;

    机译:氮空位;g-C3N4;带隙;光催化制氢;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号