首页> 外文期刊>Applied Surface Science >3D heterogeneous wetting microchannel surfaces for boiling heat transfer enhancement
【24h】

3D heterogeneous wetting microchannel surfaces for boiling heat transfer enhancement

机译:3D异质润湿微通道表面,可增强沸腾传热

获取原文
获取原文并翻译 | 示例

摘要

The manipulation of surface wettability, such as the usage of hydrophobic/hydrophilic hybrid surfaces, is a promising method to enhance boiling heat transfer. However, most studies on wettability manipulation are performed on a 2D bare plain surface without considering the influence of microstructures. In order to disclose the synergistic effects of heterogeneous wettability and microstructures, three types of 3D heterogeneous wetting microchannel surfaces (i.e., TS1, TS2, and TS3) that exhibit different wettability combinations of the inner surface and fin top surface are designed, fabricated, and characterized. The inner surfaces of different microchannels exhibit the same porous structures with a contact angle of 113.2 degrees while the fin top surfaces prepared by different technologies exhibit contact angles of 88.6 degrees (TS1), 8.6 degrees (TS2), and 156.1 degrees (TS3). Saturated boiling of water on the surfaces is experimentally investigated. The maximum heat transfer coefficient (HTC) of 365.0 kW/m(2) K is obtained with TS3 and is 6.3 times that of the 2D bare plain surface (BS). The highest critical heat flux (CHF) of 162.7 W/cm(2) is achieved with TS2 and increases by 60% when compared with that of the BS. The synergistic effects of wettability and microstructures on the boiling performance are summarized in terms of two aspects: (1) combinations of microstructures with hydrophobicity contribute to a high HTC at low heat fluxes and small superheat for the onset of boiling since microstructures provide potential bubble nucleation sites and hydrophobicity reduces the energy barrier of the phase change; (2) combinations of microstructures with hydrophilicity lead to a high CHF since microstructures exhibit a strong capillary pumping ability for liquid returning to the heated surfaces and hydrophilicity enhances liquid affinity with respect to the heated surface. Two bubble growth patterns termed 'oblate bubble growth' and 'conical bubble growth' are identified based on the observations and are observed as closely related to the synergistic effects of wettability and microstructures.
机译:表面润湿性的操纵,例如疏水/亲水混合表面的使用,是增强沸腾传热的有前途的方法。但是,大多数关于润湿性操纵的研究都是在2D裸露的平整表面上进行的,而没有考虑微结构的影响。为了揭示异质润湿性和微观结构的协同效应,设计,制造和制造了三种类型的3D异质润湿微通道表面(即TS1,TS2和TS3),它们表现出内表面和散热片顶表面的不同润湿性组合。表征。不同微通道的内表面表现出相同的多孔结构,接触角为113.2度,而采用不同技术制备的鳍片顶部表面的接触角为88.6度(TS1),8.6度(TS2)和156.1度(TS3)。实验研究了水在表面上的饱和沸腾。使用TS3获得的最大传热系数(HTC)为365.0 kW / m(2)K,是2D裸光平面(BS)的6.3倍。 TS2可以达到162.7 W / cm(2)的最高临界热通量(CHF),与BS相比,可以提高60%。从两个方面总结了润湿性和微观结构对沸腾性能的协同作用:(1)微观结构与疏水性的组合有助于在低热通量下产生高HTC,并在沸腾开始时产生小的过热,因为微观结构提供了潜在的气泡成核位点和疏水性降低了相变的能垒; (2)微结构与亲水性的组合导致高的CHF,因为微结构表现出很强的毛细泵送能力以使液体返回加热的表面,并且亲水性增强了相对于加热的表面的液体亲和力。根据观察结果,确定了两种气泡生长模式,分别称为“扁圆形气泡生长”和“圆锥形气泡生长”,并被观察到与润湿性和微观结构的协同效应密切相关。

著录项

  • 来源
    《Applied Surface Science》 |2018年第1期|891-901|共11页
  • 作者单位

    North China Elect Power Univ, Beijing Key Lab Multiphase Flow & Heat Transfer L, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Key Lab Condit Monitoring & Control Power Plant E, Minist Educ, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Beijing Key Lab Multiphase Flow & Heat Transfer L, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Beijing Key Lab Multiphase Flow & Heat Transfer L, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Key Lab Condit Monitoring & Control Power Plant E, Minist Educ, Beijing 102206, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D microchannel surface; Heterogeneous wettability; Microstructure; Synergistic effects; Boiling; Bubble dynamics;

    机译:3D微通道表面;均匀润湿性;微观结构;协同效应;沸腾;气泡动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号