首页> 外文期刊>Applied Surface Science >Surface structure and reaction property of CuCl_2-PdCl_2 bimetallic catalyst in methanol oxycarbonylation: A DFT approach
【24h】

Surface structure and reaction property of CuCl_2-PdCl_2 bimetallic catalyst in methanol oxycarbonylation: A DFT approach

机译:CuCl_2-PdCl_2双金属催化剂在甲醇氧羰基化反应中的表面结构和反应性能:DFT方法

获取原文
获取原文并翻译 | 示例

摘要

Surface structure of CuCl_2-PdCl_2 bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl_2-PdCl_2 surfaces was also investigated. On the CuCl_2-PdCl_2 surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl_2 surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH_3 on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH_3 species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl_2-PdCl_2 surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that CuCl_2-PdCl_2 catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.
机译:利用密度泛函理论(DFT)计算,建立了CuCl_2-PdCl_2双金属催化剂(Wacker型催化剂)的表面结构,并研究了甲醇在CuCl_2-PdCl_2表面的羰基化反应机理。在CuCl_2-PdCl_2表面上,甲醇氧化的活性部位被确定为Cu-Cl-Cu(Pd)。与纯CuCl_2表面相比,Pd原子的引入引起表面电子的重新聚集,降低了甲醇氧化的能垒,但随着Pd掺杂量的增加,活性位点的数量减少。同意先前的实验结果,Pd位点最有利于CO的插入,这是由在Pd原子上形成COOCH_3的最低活化势垒所表明的。当COOCH_3物种吸附在Pd原子上且甲氧基吸附在Cu原子上时,形成DMC的最低能垒出现在0.42 eV。最后,不饱和表面的重建是一个自发的放热过程。与其他表面相比,在Pd / Cu = 1:17的CuCl_2-PdCl_2表面上的限速步骤甲醇氧化的能垒最低,这与实验观察结果一致,即Pd / Cu = 1:20有良好的活动。吸附的甲氧基将进一步降低甲醇氧化的活化能垒,这与实验观察一致,即瓦克型催化剂在甲醇氧化羰基化系统中具有诱导期。

著录项

  • 来源
    《Applied Surface Science》 |2014年第15期|117-127|共11页
  • 作者单位

    Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

    Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

    Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

    Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

    School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China;

    Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanism; Dimethyl carbonate; Methanol; PdCl_2-CuCl_2; Density functional theory;

    机译:机制;碳酸二甲酯;甲醇;PdCl_2-CuCl_2;密度泛函理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号