...
首页> 外文期刊>Applied Surface Science >Chemical vapor deposition graphene of high mobility by gradient growth method on an 4H-SiC (0001) substrate
【24h】

Chemical vapor deposition graphene of high mobility by gradient growth method on an 4H-SiC (0001) substrate

机译:通过梯度生长法在4H-SiC(0001)衬底上的高迁移率化学气相沉积石墨烯

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene directly grown on an 4H-SiC (0 0 0 1) substrate by chemical vapor deposition was studied: it was shown that Si evaporation process is not completely halted during graphene growth when TG 1400 degrees C, the SiC substrate decomposes at the position of graphene coverage. AFM and Raman spectrum results reveal that carbon concentration significantly influences graphene growth rate and morphology/structure. It is found that the quality of graphene film depends on the growth temperature and the flow of carbon source. We develop a new gradient growth method to produce a feasible graphene material for electronic devices. Graphene grown by this method has a flat-morphology structure, low wrinkle density, high crystal quality, good uniformity, and outstanding electrical transport properties. Nitrogen doping has an n-type doping effect on graphene carrier concentration. The main component of nitrogen-bond type is the graphitic configuration. The graphene material with nitrogen doping reaches a record mobility of 9010 cm(2)/V.s by room temperature Hall effect measurement, indicating graphene grown by gradient method with suitable nitrogen doping could yield a high quality film comparable to that by traditional method.
机译:研究了通过化学气相沉积法直接在4H-SiC(0 0 0 1)衬底上生长的石墨烯:研究表明,当TG 1400摄氏度时,石墨烯生长过程中Si的蒸发过程并未完全停止,SiC衬底在200℃分解。石墨烯覆盖率。 AFM和拉曼光谱结果表明,碳浓度显着影响石墨烯的生长速率和形态/结构。发现石墨烯膜的质量取决于生长温度和碳源的流动。我们开发了一种新的梯度生长方法,以生产适用于电子设备的石墨烯材料。通过这种方法生长的石墨烯具有平坦的形态结构,低的皱纹密度,高的晶体质量,良好的均匀性和出色的电传输性能。氮掺杂对石墨烯载流子浓度具有n型掺杂作用。氮键型的主要成分是石墨构型。通过室温霍尔效应测量,具有氮掺杂的石墨烯材料达到了创纪录的9010 cm(2)/V.s的迁移率,这表明通过梯度法与适当的氮掺杂一起生长的石墨烯可以产生与传统方法相当的高质量薄膜。

著录项

  • 来源
    《Applied Surface Science》 |2018年第1期|68-73|共6页
  • 作者单位

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

    Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graphene; Chemical vapor deposition; SiC substrate; Growth; Electrical transport property;

    机译:石墨烯;化学气相沉积;SiC衬底;生长;电输运性能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号