...
首页> 外文期刊>Applied Surface Science >In-depth understanding of core-shell nanoarchitecture evolution of g-C_3N_4@C, N co-doped anatase/rutile: Efficient charge separation and enhanced visible-light photocatalytic performance
【24h】

In-depth understanding of core-shell nanoarchitecture evolution of g-C_3N_4@C, N co-doped anatase/rutile: Efficient charge separation and enhanced visible-light photocatalytic performance

机译:深入了解g-C_3N_4 @ C,N共掺杂锐钛矿/金红石型核-壳纳米结构的演化:高效电荷分离和增强的可见光光催化性能

获取原文
获取原文并翻译 | 示例

摘要

Graphical abstractDisplay OmittedHighlightsMulticomponent heterojunction via facile sol-gel assisted heat treatment approach.g-C3N4coated on anatase/rutile mixed phase at higher heat treatment temperature.Unique band structure alignment, electron-holes separation and transport mechanism.AbstractHerein, we demonstrated the simultaneous formation of multi-component heterojunction consisting graphitic carbon nitride (g-C3N4) and C, N co-doped anatase/rutile mixed phase by using facile sol-gel assisted heat treatment. The evolution of core-shell nanostructures heterojunction formation was elucidated by varying the temperature of heat treatment from 300°C to 600°C. Homogeneous heterojunction formation between g-C3N4and anatase/rutile mixed phase was observed in gT400 with C and N doping into TiO2lattice by O substitution. The core-shell nanoarchitectures between g-C3N4as shell, and anatase/rutile mixed phase as core with C and N atoms are doped at the interstitial positions of TiO2lattice was observed in gT500. The result indicated that core-shell nanoarchitectures photocatalyst (gT500) prepared at 500 ◦C exhibited the highest photocatalytic activity in the degradation of methyl orange under visible light irradiation. Meanwhile, the possible mechanisms of charge generation, migration, action species and reaction that probably occur at the gT500 sample were also proposed. The photodegradation results of gT500 correlated completely with the results of the PEC and photoluminescence analysis, which directly evidenced improved charge separation and migration as the crucial parameters governing photocatalysis. It is worthy to note that, the simultaneous formation of multicomponent heterojunction with core-shell structure provided an enormous impact in designing highly active photocatalyst with superior interfacial charge transfer.
机译: 图形摘要 < ce:simple-para>省略显示 突出显示 通过便捷的多组件异质结溶胶凝胶辅助热处理方法。 gC 3 N 4 外套 唯一的能带结构排列,电子-空穴分离和传输机制。 < / ce:simple-para> 摘要 此处,我们演示了同时形成由石墨组成的多组分异质结氮化碳(gC 3 N 4 )和C,N共掺杂锐钛矿/金红石混合相通过使用便捷的溶胶-凝胶辅助热处理。通过将热处理温度从300°C更改为600°C,阐明了核-壳纳米结构异质结形成的演变。在gT400中观察到gC 3 N 4 与锐钛矿/金红石混合相之间的同质异质结形成通过O取代将C和N掺杂到TiO 2 晶格中。 gC 3 N 4 作为壳和锐钛矿/金红石混合体之间的核壳纳米结构在gT500中观察到了以C和N原子为核的碳原子相掺杂在TiO 2 晶格的间隙位置。结果表明,在可见光照射下,在500℃下制备的核壳纳米结构光催化剂(gT500)在甲基橙的降解中表现出最高的光催化活性。同时,还提出了可能在gT500样品上发生的电荷产生,迁移,作用物种和反应的可能机理。 gT500的光降解结果与PEC和光致发光分析的结果完全相关,直接证明改进的电荷分离和迁移是控制光催化的关键参数。值得注意的是,同时形成具有核-壳结构的多组分异质结对设计具有优异界面电荷转移的高活性光催化剂具有巨大的影响。 < / ce:抽象>

著录项

  • 来源
    《Applied Surface Science》 |2018年第1期|302-318|共17页
  • 作者单位

    Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, UKM Bangi;

    Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia;

    Sustainable Construction Materials and Building Systems (SUCOMBS) Research Group, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia;

    Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, UKM Bangi;

    Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, UKM Bangi,School of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM Bangi;

    Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris;

    Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia,Department of Oil and Gas Engineering, Faculty of Chemical Engineering, Universiti Teknologi MARA;

    Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia;

    Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia;

    Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graphitic carbon nitride; Mesopores and macropores; Core-shell; Visible-light; Interfacial charge transfer transfer;

    机译:石墨碳氮化物;中孔和大孔;核-壳;可见光;界面电荷转移转移;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号