首页> 外文期刊>IEEE Transactions on Applied Superconductivity >Comparison of genetic algorithms to other optimization techniques for raising circuit yield in superconducting digital circuits
【24h】

Comparison of genetic algorithms to other optimization techniques for raising circuit yield in superconducting digital circuits

机译:遗传算法与其他用于提高超导数字电路的电路成品率的优化技术的比较

获取原文
获取原文并翻译 | 示例

摘要

Novel logic devices in the RSFQ and COSL superconducting logic families are most often sub-optimal. Before such devices can be incorporated into physical designs, they have to be optimized for high theoretical yield, and preferably for highest possible yield. Even simple logic gates can contain numerous inductors, resistors and Josephson junctions. During optimization, it is often needed to adjust all the element values. The search space is therefore very large, and genetic algorithms have been used with success to optimize such gates. The conversion of circuit file to genome for the genetic algorithms is discussed, as well as fitness evaluation through Monte Carlo analysis. Results with both novel and existing logic gates are presented. Other optimization techniques are also discussed in comparison to genetic algorithms.
机译:RSFQ和COSL超导逻辑系列中的新型逻辑设备通常是次优的。在将这样的器件结合到物理设计中之前,必须先对其进行优化,以实现高理论产量,并优选实现最高可能的产量。甚至简单的逻辑门也可以包含许多电感器,电阻器和约瑟夫森结。在优化过程中,通常需要调整所有元素值。因此,搜索空间非常大,并且成功地使用了遗传算法来优化此类门。讨论了电路文件到基因组的遗传算法转换,以及通过蒙特卡洛分析的适用性评估。提出了具有新颖和现有逻辑门的结果。与遗传算法相比,还讨论了其他优化技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号