首页> 外文期刊>Applied Superconductivity, IEEE Transactions on >Condition Based Monitoring of Superconducting Fault Current Limiter Using Fuzzy Support Vector Regression
【24h】

Condition Based Monitoring of Superconducting Fault Current Limiter Using Fuzzy Support Vector Regression

机译:基于状态支持的模糊支持向量回归的超导故障限流器监测

获取原文
获取原文并翻译 | 示例

摘要

The superconductor-triggered type fault current limiter (STFCL), which was developed by KEPCO and LS Industrial Systems, is under operation for a verification test at KEPCO's power testing center. The STFCL is composed of a superconductor, a fast switch and a current limiting resistor. In this paper, we investigated the empirical modeling of the STFCL using principal component based and fuzzy support vector regression (PCFSVR) for the prediction and detection of faults in the STFCL. Signals for the model are the currents and voltages acquired from the high-temperature superconductor (HTS), driving coil (DC) and current limiting resistor (CLR). After developing an empirical model, we analyzed the accuracy of the model. The results were compared with those of principal component based support vector regression (PCSVR) as presented in MT21. PCFSVR showed better performance in terms of the average level of accuracy. This model can be used for the condition-based monitoring of STFCL systems to predict any fault symptoms of the system through the advantage of the auto-correction function of the model.
机译:由KEPCO和LS Industrial Systems开发的超导体触发型故障限流器(STFCL)正在KEPCO的功率测试中心进行验证测试。 STFCL由超导体,快速开关和限流电阻组成。在本文中,我们研究了基于主成分和模糊支持向量回归(PCFSVR)的STFCL的经验模型,以预测和检测STFCL中的故障。该模型的信号是从高温超导体(HTS),驱动线圈(DC)和限流电阻(CLR)获得的电流和电压。建立经验模型后,我们分析了模型的准确性。将结果与MT21中基于主成分的支持向量回归(PCSVR)进行了比较。 PCFSVR在平均准确度方面显示出更好的性能。该模型可用于STFCL系统的基于状态的监视,以通过该模型的自动校正功能来预测系统的任何故障症状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号