首页> 外文期刊>Applied Superconductivity, IEEE Transactions on >Denoising Multi-Channel Images in Parallel MRI by Low Rank Matrix Decomposition
【24h】

Denoising Multi-Channel Images in Parallel MRI by Low Rank Matrix Decomposition

机译:通过低秩矩阵分解对并行MRI中的多通道图像进行降噪

获取原文
获取原文并翻译 | 示例

摘要

Parallel magnetic resonance imaging (pMRI) techniques can speed up MRI scan through a multi-channel coil array receiving signal simultaneously. Nevertheless, noise amplification and aliasing artifacts are serious in pMRI reconstructed images at high accelerations. This study presents a patch-wise denoising method for pMRI by exploiting the rank deficiency of multi-channel coil images and sparsity of artifacts. For each processed patch, similar patches are searched in spatial domain and throughout all coil elements, and arranged in appropriate matrix forms. Then, noise and aliasing artifacts are removed from the structured matrix by applying sparse and low rank matrix decomposition method. The proposed method has been validated using both phantom and in vivo brain data sets, producing encouraging results. Specifically, the method can effectively remove both noise and residual aliasing artifact from pMRI reconstructed noisy images, and produce higher peak signal noise rate (PSNR) and structural similarity index matrix (SSIM) than other state-of-the-art denoising methods.
机译:并行磁共振成像(pMRI)技术可以通过同时接收信号的多通道线圈阵列加快MRI扫描速度。然而,在pMRI重建的图像中,高加速度下的噪声放大和混叠伪影很严重。本研究通过利用多通道线圈图像的秩不足和伪像稀疏性,提出了一种针对pMRI的逐块降噪方法。对于每个已处理的贴片,在空间域中以及整个线圈元素中搜索相似的贴片,并以适当的矩阵形式排列。然后,通过应用稀疏和低秩矩阵分解方法从结构化矩阵中去除噪声和混叠伪像。拟议的方法已使用幻像和体内大脑数据集进行了验证,产生了令人鼓舞的结果。具体而言,该方法可以有效地从pMRI重建的噪波图像中去除噪声和残留混叠伪像,并且比其他现有技术的降噪方法产生更高的峰值信号噪声率(PSNR)和结构相似性指标矩阵(SSIM)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号